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Abstract

We develop a model of interbank networks in which banks experience state-contingent

liquidity shocks. We show that networks of long-term debt facilitate the e�cient trans-

fer of liquidity: They allow shocked banks to raise liquidity using interbank claims as

collateral for new debt, diluting interbank liabilities. Networks of long-term debt thus

have strikingly di↵erent properties from those of short-term debt, which cannot be di-

luted; e.g., high indebtedness and connectedness can be sources of stability, not fragility.

Networks in a specific class, which we call “exponential networks,” implement optimal

contingent transfers despite consisting of plain (non-contingent) debt—they are robust

but never fragile.
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1 Introduction

Banks are connected in networks of debt. Unlike in the Walrasian model, in which only

net positions matter, gross positions are thought to be a source of systemic risk. A number

of theory papers support this conclusion, showing, inter alia, that tightly inter-connected

network structures are “robust yet fragile,” absorbing everyday shocks but amplifying ex-

traordinary ones (see, notably, Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015), hereinafter

AOT, and Allen and Gale (2000)). Banks maintain these positions even though practitioners

and policy makers alike champion netting them out, saying, e.g., that “Support for netting is

well-nigh universal in the financial industry as well as among policy makers” (Mengle (2010),

p. 2).

The literature has focused on short-term (one-period) debt, capturing, e.g., repo markets.

But, in practice, interbank debts often have longer maturity.1 In this paper, we develop a

financial networks model of long-term interbank debt. Do interbank networks of long-term

debts harbor the same systemic risks of those of short-? Do the same network structures

lead risks to propagate? Do they serve an economic function that could be undermined by

netting out debts?

We find that high indebtedness and connectedness can be sources of stability in long-

term debt networks, in diametric contrast to short-. Networks in a specific class, which we

call the “exponential networks,” implement the e�cient transfers of liquidity no matter the

distribution of shocks. They are robust but never fragile.

One feature of long-term debt underlies our results: It embeds the option to dilute with

new debt to a third party. For illustration, consider a bank in the network with interbank

debts on both sides of its balance sheet, claims on other banks on the left and liabilities to

other banks on the right. If the debts are long-term, it can raise new debt to meet a liquidity

1Several papers use data on interbank debt in Germany. They find an average maturity longer than a
year and a fraction of overnight debt of about 10% (see, e.g., Bluhm, Georg, and Krahnen (2016), Craig and
Ma (2021), Craig and Von Peter (2014), Gabrieli and Georg (2014), and Upper and Worms (2004)). Kuo
et al. (2014) point to the scarcity of data on the maturity of US interbank debt and develop a method to
impute it from payments data, which suggests that about a quarter of it is term debt.



shock. To do so, it uses its claims on other banks as collateral while diluting its liabilities to

other banks. Not so with short-term debt. Being due right away, it cannot be diluted. Thus,

whereas all interbank networks can create collateral on the left-hand side of bank balance

sheets, only short-term networks encumber that collateral on the right.

To capture banks’ liquidity risk, we employ elements of Holmström and Tirole (1998)

in a financial networks model. Banks in the model have a maturity mismatch: They have

long-term assets but could su↵er a liquidity shock in the short term. We assume that their

assets are not perfectly pledgeable. This gives liquidity risk bite: Banks could be unable to

raise liquidity by pledging their assets in the market, and could be ine�ciently liquidated as

a result.

We start with the benchmark of short-term debt networks before turning to our main

analysis, of long-term debt. We demonstrate that the benchmark model is isomorphic to

AOT’s, mutatis mutandis. Thus we can apply their measures of connectedness such as delta

connectedness, the bottleneck parameter, and the harmonic distance. From their analysis,

we know that (i) netting out short-term debts increases financial stability (Lemma 2); (ii)

more connected networks (appropriately defined) are less stable for large shocks (Lemma 3

and Lemma 5); and (iii) there is a “default radius” around a negatively shocked bank, i.e.

closely connected banks also default (Lemma 4). Behind all these results is the idea that

short-term liabilities encumber banks’ assets, preventing them from raising liquidity to meet

shocks.

We begin our analysis of the long-term debt network by showing the existence and generic

uniqueness of a payment equilibrium (Proposition 1). We then establish two sets of main

results.

The first contrasts the long-term debt network to the short-. We show that, in diametric

contrast to what happens with short-term debt, (i) netting out long-term debts undermines

financial stability (Proposition 2); (ii) more tightly connected networks are more stable for

large shocks (Proposition 3 via delta connectedness and Proposition 5 via the bottleneck
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parameter); and (iii) there is a “salvation radius” around a not-shocked bank, i.e. closely

connected banks are not liquidated (Proposition 4 using the harmonic distance).

Although all long-term debt networks enhance financial stability in our model, many are

still ine�cient, in that more banks than necessary are liquidated. In particular, some banks

suck liquidity out of the system only to be liquidated anyway. For example, any symmetric

network allocates excess liquidity equally among distressed banks, when a planner would

prioritize them, allocating all the liquidity to the largest subset of banks that it can hope to

save and writing o↵ the others entirely (Lemma 6).

Our second set of main results pertains to the exponential networks. In these networks,

all banks have debts with all others. But these debts are not the same size. Each bank has

larger positions with bank Bi than Bi+1 for all i, a condition we call “assortativity,” which

creates an endogenous size distribution. We show that if the positions decay exponentially

at a high enough rate, the network is the most e�cient no matter the distribution of shocks,

in the sense that it allows the greatest number of distressed banks to avoid liquidation

(Proposition 6). Intuitively, it prioritizes the allocation of liquidity so that the largest bank

always gets the liquidity it needs to survive, the second largest does too as long as there is

enough left in aggregate after saving the largest bank, and so on. The network is tightly

connected, like the core of real-world interbank networks,2 and the size distribution is similar

to the empirical one, with some banks being “too big to fail” due to only their position in

the interbank financial network (as banks are identical in every other way).

Overall, our results provide a new perspective on financial stability. Gross long-term debts

can enhance it, suggesting they should not necessarily be netted out—zero-net positions can

have positive net present value. Large, highly levered banks can facilitate the allocation of

liquidity, suggesting they should not necessarily downsize or recapitalize.

The mechanism in the model reflects practice: All banks maintain gross positions, e.g.,

cross holdings of loans or bonds, which shocked banks dilute with new senior debt, e.g., repos.

2If banks in our model represent the core of a larger network, their liquidity shocks/assets in place could
represent their liabilities to/claims on peripheral banks, albeit in reduced form.
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It also points to a possible reason why bankers could view the “super senior” bankruptcy

treatment of repos as attractive, despite being irrelevant according to the Modigliani–Miller

view: It facilitates dilution and therefore e�cient contingent transfers.

We analyze two extensions that qualify our rosy view of large long-term debts (Section

6). In one, we allow liquidation to be e�cient, so not all banks should meet their shocks;

in the other, we assume that any default is costly, not only those that induce ine�cient

liquidation. In each case, we show how to calibrate debt levels to implement the e�cient

outcome, albeit only for specific networks. The takeaway is that, per the baseline, debts

should be high enough that banks have the unencumbered collateral to weather shocks when

liquidation is ine�cient, but, now, not so high that they induce too little liquidation or too

much default.

In another extension, we allow banks to be heterogeneous, each with di↵erent assets

in place and/or liquidity shocks. We show that the planner’s problem is equivalent to a

problem in computer science called the “knapsack problem” (Proposition 8) and that the

exponential network implements an algorithm used to solve it called the “greedy algorithm”

(Proposition 9). The algorithm need not implement the (constrained) e�cient solution.

But it often does, e.g., when each bank’s liquidity shortfall is the same size (Corollary 2).

Moreover, when it does not, the e�ciency loss can be bounded, e.g., by the deadweight loss

of liquidating one specific bank (Corollary 3). (Such approximate optimality could be the

only sensible policy goal, as the knapsack problem is computationally hard.) These results

suggest that exponential networks implement a policy that is robust not only to which banks

are shocked, but also to their size distribution.

Our paper makes two main contributions to the literature. First, it shows how maturity

matters in financial networks, contributing to the networks literature, which is focused on

short-maturity debt.3 Only three other papers study longer maturity debt in networks

models, to our knowledge: (i) Allen, Babus, and Carletti (2012), which, unlike us, focuses

3Surveys include Allen, Babus, and Carletti (2009), Allen and Walther (2021), Glasserman and Young
(2016), and Jackson and Pernoud (2021).
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on the maturity of debts to investors outside the network, not among banks within it, (ii)

Kusnetsov and Veraart (2018), a mathematical finance paper, which studies the problem of

defining and constructing the equilibria in the Eisenberg and Noe (2001) environment with

multiple maturities, and (iii) He and Li (2022), which studies how maturity transformation

via debt chains can mitigate rollover/resale risk. None of these papers studies debt dilution or

the properties of various network structures, our main themes. Second, our paper builds on

the idea that default can implement valuable contingencies (notably, Allen and Gale (1998),

Dubey, Geanakoplos, and Shubik (1988), and Zame (1993)). We show that the option to

dilute provides another layer of contingency on top of the option to default. And we show

how network structures can leverage this option: An appropriately constructed network

of plain (non-contingent) debt can in fact implement the (constrained) e�cient outcome,

allocating all available liquidity to the right set of banks, under fairly general conditions.4

It thus points to an unexplored way that time contingency (maturity) substitutes for state

contingency, complementing Angeletos’s (2002) idea that the set of bonds of all maturities,

whose prices depend on the entire term structure of interest rates, can span all assets (see

also Gale (1990)).

The rest of the paper proceeds as follows. Section 2 presents the model. Section 3

considers the short-term debt benchmark. Section 4 states the qualitative properties of

long-term debt networks. Section 5 analyzes the exponential network. Section 6 analyzes

extensions. Section 7 concludes. The Appendix contains all proofs and a table of notations.

2 Model

We consider a model with two dates t 2 {1, 2} and N � 2 agents B1,B2, ...,BN , which

we refer to as “banks.” They resemble real-world banks in so far as each has a maturity

mismatch. Bi has assets y in place that pay o↵ at Date 2 and could su↵er a liquidity shock

4Probably the strongest condition is that, in our model, each bank’s liquidation cost is independent of the
state, thus so is the planner’s order of priority in saving shocked banks. If it were better to save Bi instead
of Bj in some states and Bj instead of Bi in others, the exponential network could be constrained ine�cient.
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` at Date 1.5 We assume that only the fraction ✓ of y is valuable to outsiders and the

remaining (1� ✓)y accrues to Bi alone, a formulation that serves as a catch-all for numerous

agency problems.6 If Bi cannot meet its liquidity shock its assets are thus liquidated/sold

for ✓y < `.

We write �i = 1 if Bi is shocked and �i = 0 otherwise. There is no other risk, so the

“state,” which is realized at Date 1, is the profile {�i}i =: �. (We impose no restrictions on

its distribution.) There is universal risk neutrality and no discounting.

In addition to their long-term assets and liquidity needs, banks also have debts both to

and from other banks—“interbank liabilities” and “interbank claims”—maturing at Date 2.

The face value of Bi’s liability to Bj is denoted by Fi!j, of all its liabilities to other banks

by Fi◆ :=
P

j 6=i Fi!j, and of its claims on other banks by Fi✓ :=
P

j 6=i Fj!i; F◆ denotes

the vector with ith element Fi◆. The matrix F := [Fi!j]ij defines the interbank network.

Following AOT, we assume throughout that it satisfies Fi✓ = Fi◆ for all i, so banks have zero

net interbank positions. That is a reasonable approximation of reality, as gross interbank

positions are often an order of magnitude larger than net.7

We denote Bi’s equilibrium repayment to Bj by Ri!j, its total repayment to all other

banks by Ri◆ :=
P

i 6=j Ri!j, and its total repayment from all other banks by Ri✓ :=
P

i 6=j Rj!i; Ri◆ is a vector with ith element Ri◆. If Bi does not default, then it repays all of

its liabilities in full: Ri!j = Fi!j for all j. But Bi can default. In that case, its repayments

are less than the face values of its liabilities. We assume that banks repay their interbank

5Throughout, we use “liquidity” in the sense of “inside liquidity” in Holmström and Tirole (1998).
6The formulation can be interpreted literally in terms of private benefits or cash diversion; for micro-

foundations in terms of other agency problems, see, e.g., DeMarzo and Fishman (2007) and Donaldson,
Gromb, and Piacentino (2021a).

7For example, in 2021, Barclays PLC’s net interbank position was about an eighth of
its gross, Lloyd’s about a fourteenth, and HSBC’s about a fifth. Specifically, their loans
to and from other banks were, respectively, about 13.9 and 16.4, 7.0 and 7.6, and 83.1
and 101.1 billion GBP; see home.barclays/content/dam/home-barclays/documents/investor-
relations/reports-and-events/annual-reports/2021/Barclays-Bank-PLC-2021-AR.pdf, p. 207, lloyds-
bankinggroup.com/assets/pdfs/investors/annual-report/2021/2021-lbg-annual-report.pdf, pp. 207–208, and
hsbc.com/investors/results-and-announcements/annual-report, p. 310.
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liabilities in pro rata shares Fi!j/Fi◆ =: F̂i!j:

Ri!j = F̂i!jRi◆. (1)

This assumption follows the literature (Eisenberg and Noe (2001)) and reflects bankruptcy

law and practice.8

At Date 1, after the shocks � are realized, banks can borrow in a competitive market.

We assume that they can issue new liabilities of high priority; existing interbank liabilities

are thereby diluted, in that their claims on assets are now subordinated to new creditors’.9

These new liabilities could represent repos, which have “super-senior” claims on assets in

bankruptcy.10,11 As a result, they can borrow against all their pledgeable assets—the pledge-

able part ✓y of their long-term assets and their interbank claims Ri✓. Bi is thus liquidated

if the total value of its pledgeable assets is less than its liquidity needs, or if

✓y +Ri✓ < `�i. (2)

This captures our key twist relative to the literature: The long-term liabilities Fi◆ that Bi

has in place do not appear. As they can be diluted, they do not impede Bi from raising

liquidity, whereas, in contrast, short-term liabilities do (see Section 3).

In liquidation, a bank’s payo↵ and repayments are zero.12

8Csóka and Herings (2021) provides an axiomatic foundation for the pro rata assumption.
9Note that dilution, as used here, need not decrease the value of existing liabilities. Although existing

liabilities have a smaller slice of the asset pie, these assets might be more valuable if dilution increases the
size of the pie (e.g., meeting a liquidity shock).

10As such, the model could reflect how banks su↵ering liquidity shocks use super-senior (repo) financing
to relax their borrowing constraints, something LTCM, Bear Stearns, and Lehman Brothers all did (or tried
to do). (See, e.g., Jorion (2000, pp. 282–284) on LTCM, Rose, Bergstresser, and Lane (2009, pp. 11–13) on
Bear, and Valukas (2010 , pp. 3 and 9–10) on Lehman.)

11Thus, there are two priority classes of debt in our model: new repo-type debt paid first and interbank
debts paid next pro rata. This is a good approximation of reality, in which there are two main priority
classes: secured debt paid first and unsecured paid next pro rata (see, e.g., Schwartz (1989)). (AOT also
features two priority classes, but the senior debt is in place at inception.)

12The assumption that interbank repayments are zero follows AOT, in which liquidity shocks—their “out-
side obligations”—are senior to interbank debts. The opposite assumption makes the repayment in equa-
tion (5) discontinuous and can lead to non-existence of the payment equilibrium (see Definition 1 below).
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The non-pledgeable assets (1 � ✓)y are destroyed. That is the only deadweight loss in

the model (except in extensions; see Section 6.1 and Section 6.2).

Banks that are not liquidated at Date 1 continue to produce y at Date 2. Bi’s total

(real and financial) assets are thus y � `�i + Ri✓. (The cash raised via new debt at Date 1

and its associated repayment do not appear because, the liability being riskless, the amount

borrowed equals the amount repaid, and they cancel out at Date 2.) At this point, Bi can

either default and capture its non-pledgeable asset value (1 � ✓)y or repay in full. It thus

defaults if

✓y � `�i +Ri✓ < Fi◆. (3)

Observe that, unlike liquidation, which destroys non-pledgeable assets, default alone does

not cause a deadweight loss, but just a transfer from creditors to debtors. (We include

deadweight losses from default in Section 6.2.)

Combining the liquidation condition (2) and the default condition (3), we have the se-

quentially rational repayment:

Ri◆ =

8
>>>>>>>>><

>>>>>>>>>:

0 if ✓y � `�i +Ri✓  0 ,

✓y � `�i +Ri✓ if ✓y � `�i +Ri✓ 2 (0, Fi◆] ,

Fi◆ otherwise

(4)

= max
n
0 , min

�
✓y � `�i +Ri✓ , Fi◆

 o
. (5)

To define the equilibrium, we also require that markets clear: The repayments Bi receives

It does not, however, alter our central insights on the benefits of high indebtedness and connectedness with
long-term debt; see Donaldson and Piacentino (2018).
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from other banks coincide with the repayments other banks make to it:

Ri✓ =
X

j 6=i

Rj!i. (6)

Definition 1 (Payment equilibrium). A payment equilibrium is a repayment vector {Ri!j}i 6=j

for each state � such that the repayments

(i) are sequentially rational (equation (5)),

(ii) are paid pro rata (equation (1)), and

(iii) clear the market (equation (6)).

It is convenient to combine the equilibrium conditions to write a vector fixed point equation:

R◆ =
h
min

�
F◆ , ✓y1� `� + F̂>R◆

 i+
, (7)

a solution of which is often called the “clearing vector.” (1 denotes the vector of N ones:

(1, ..., 1) 2 RN .)

The only deadweight loss in the model is due to liquidation. Thus we adopt the following

notion of e�ciency:

Definition 2 (E�ciency). One network is more e�cient than another if fewer banks are

liquidated in equilibrium for every state �.

This is a strengthening of AOT’s notions of “stability” (fewer liquidations on average for

a given number of shocks) and “resilience” (fewer liquidations in the worst case scenario)

in that if one network is more e�cient than another it is more stable and more resilient

too. The e�ciency ranking is not a total order on the set of networks, but we derive strong

enough results that it su�ces for our purposes (except in the extension with heterogeneous

banks in Section 6.3, where we modify it; see Definition 11).

For several of our results, it is useful to define the following network structures:
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Definition 3 (Network typology). A network is regular if Fi◆ = Fj◆ for i 6= j, symmetric

if Fi!j = Fj!i for i 6= j, complete if Fi!j is constant for i 6= j, ring if it is regular and

Fi!j = 0 unless j = i+ 1 (mod N).

In words, in a regular network, each bank has the same total liabilities; in a symmetric

network, each pair of banks has zero net positions; in a complete network, every bank has

the same liability to every other; in a ring network, each bank has liabilities to one other

and claims one other in a circle.

It is also useful to define several properties of networks, capturing how closely banks are

connected to one another.

Definition 4 (Delta connectedness). A regular network F is �-connected if there is a subset

of banks B such that F̂i!j  � and F̂j!i  � for all i 2 B and j 2 B
c
.

It is connected if it is not �-connected for � = 0.

In words, a network has low � if one of its components has weak ties to the rest of it.

Definition 5 (Harmonic distance). For a regular network F, the harmonic distance from

Bi to Bj is the solution to di!j := 1 +
P

k 6=i di!kF̂k!j for i 6= j and di!i = 0.

In words, di!j is the liability-weighted distance from i ! j, which captures how easily

liquidity (or the lack thereof) can flow from Bi to Bj.

Definition 6 (Bottleneck parameter). For a regular network F, the bottleneck parameter

is

� = min
B

X

i2B

X

j2Bc

F̂i!j

|B||Bc| . (8)

In words, a network has low � if one of its components has relatively low liabilities to the

rest of it. It is similar to � above, but directional (in that it is silent about the liabilities

from the rest to the component).
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3 Short-term Debt Benchmark

Here we consider the network in which the interbank liabilities Fi!j are due at Date 1 instead

of Date 2. This benchmark helps us both to compare our model to the literature and to

contrast our results to those therein.

Now interbank liabilities, being due immediately, cannot be diluted with new debt at

Date 1. Thus Bi is liquidated if its pledgable assets are insu�cient to cover not only its

liquidity needs `�i but also its interbank liabilities Fi◆, or

✓y +Ri✓ < `�i + Fi◆. (9)

This condition for liquidation coincides with that for default. In that respect, the benchmark

contrasts with the baseline, in which the conditions are di↵erent. Nonetheless, the equations

for the clearing vector are the same in both versions, as the liquidation value at Date 1

coincides with the pledgeable value at Date 2: Banks that would default at Date 2 in the

baseline model make the same repayment when they are liquidated at Date 1 here. Thus we

do not need to adjust the equilibrium definition here. Only e�ciency changes.

Without the distinction between liquidation and default, this benchmark boils down to

AOT’s model:

Lemma 1 (Isomorphism between benchmark and AOT). There is an isomorphism between

equilibrium and e�ciency in our short-term debt benchmark and AOT’s model in the case

in which long-term assets are fully destroyed by default and cash holdings are zero (under

which they derive most of their results).

(The isomorphism between our benchmark and AOT, while mechanical, was unexpected to

us, as the models seemed di↵erent prima facie. Our model seemed to be about liquidity,

theirs about solvency. We now see both as about both: In both, a shock decreases total

asset value (solvency) and might not be met only because long-term assets are not fully

pledgeable (liquidity).)
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We now restate, and sometimes strengthen, several of AOT’s results, focusing on those

that contrast with our results on the long-term debt network, starting with debt levels.

Lemma 2 (Netting in short-term benchmark). Suppose F is a regular network. ↵F is less

e�cient than F whenever ↵ > 1.

This is a generalization of AOT’s Proposition 3 (p. 574) to an arbitrary number of shocked

banks (they prove it for just one). It says that less debt is a good thing. Indeed, it would be

better to have none whatsoever (↵ = 0). Intuitively, when one bank defaults on its liability

to another, the other finds it harder to pay its liability to yet another. So distress propagates

from shocked banks to otherwise healthy ones, especially when debts are high (↵ > 1).

We now turn to network connectedness.

Lemma 3 (Delta connectedness in short-term benchmark). Suppose ` is su�ciently large

and exactly one bank is shocked (|�| = 1).

(i) The ring network is the least e�cient among all regular networks with Fi◆ > (N�1)✓y.

(ii) Any regular �-connected network with N� < ✓y/Fi◆ is strictly more e�cient than the

ring.

This strengthens some of the statements in AOT’s Proposition 6 (p. 577–578) by adapting

them to our notion of e�ciency (Definition 2). It says that less connectedness is a good

thing. The ring network, in which every bank has a large exposure to another, is the worst

in a class. It is better to weaken the exposures in the sense of lowering delta connectedness.

Intuitively, � captures how much risk can transmit between two components, so, unlike in

the ring network, risk cannot spillover from one to another when � is low.

We now show that there is a “default radius” around a shocked bank.

Lemma 4 (Default radius in short-term benchmark). Let F be a regular network with Fi◆ ⌘

F and suppose that exactly one bank, say Bj, is shocked and does not meet its liquidity shocks

(Rj◆ = 0). Define dST := F
✓y .
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(i) If dj!i < dST , then Bi is liquidated.

(ii) If all banks are liquidated, then dj!i < dST for all i.

This is AOT’s Proposition 8 (p. 579). It says that the harmonic distance d is, in a sense,

the right measure of one bank’s exposure to another, in that it captures exactly whether a

shocked bank’s distress will transmit to an otherwise healthy bank through the network. It

defines a radius around a shocked bank within which all banks are liquidated.

AOT link the harmonic distance d to the bottleneck parameter � using Markov chains.

They show, roughly, that di!j is the mean hitting time of a Markov chain from state i to j

and that the bottleneck parameter is closely related to the “conductance” of a graph, which

measures how hard it is for a Markov chain on a graph to leave a set of nodes. Hence the

next result:

Lemma 5 (Bottleneck connectedness in short-term benchmark). Suppose the conditions of

Lemma 4 are met and that, additionally, the network F is symmetric. Define �ST := 4
q

✓y
NF

and �ST := min
�

✓y
2NF , 1

 
.

(i) If � > �ST
, then all banks are liquidated.

(ii) If � < �ST , then at least one bank is not liquidated.

This is AOT’s Corollary 2 (p. 581). It captures the idea that if all banks are closely connected

then risk is so easily transmitted to other banks that a shock at one can lead all to fail,

whereas if they are not, it cannot. Specifically, if at least two components are not closely

connected, so � is small, risk in one of them cannot spread to the other.

4 Properties of Long-term Debt Networks

We now turn to the properties of networks in our baseline model, with long-term debt. For

each result in our short-term debt benchmark, we prove a counterpart with opposite sign:
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Whereas indebtedness and connectness do harm with short-term debt, they do good with

long-. The reason is that rather than enabling the liquidity shortage to spread from shocked

banks, they allow the liquidity surplus to spread from healthy ones.

We start with existence and uniqueness.

Proposition 1 (Existence and uniqueness). For any network F, a payment equilibrium

exists and is generically unique.

We now turn to debt levels.

Proposition 2 (Netting). Suppose F is a regular network. ↵F is more e�cient than F

whenever ↵ > 1.

This is the counterpart of Lemma 2. It says that more debt is a good thing.13 The reason is

that high debts (↵ > 1) allow shocked banks to borrow more from the market and weather

shocks. To see why, suppose two banks, Bi and Bj, have perfectly o↵-setting debts, owing

each other the same amount: ↵Fi!j = ↵Fj!i = ↵F. If one of them, say Bi, su↵ers a liquidity

shock, it raises liquidity in the market by pledging its own assets and the claim it has from

Bj, raising ✓y+Rj!i. The larger Bi’s claim ↵Fj!i on Bj is, the higher its value Rj!i is, and

the more liquidity it can raise.

Yes, increasing ↵ gives Bi a larger liability to repay in addition to a larger claim to pledge.

But it need not repay it. It has the option to default on it. That creates another option, to

dilute it. It can pledge assets to new liabilities (dilution) leaving the existing liability empty

handed (default).

That allows it to raise liquidity to the extent that the assets backing the new liabilities

are valuable. And Bi’s assets are valuable if its claim on Bj is, or Rj!i is high, which it is

whenever Bj is not shocked. In that case, Bj generally repays in full: Rj!i = ↵F . (Not

13Although, per the result, increasing debt cannot hurt if the relative debts stays the same—if ↵F increases
but F stays constant—it can if they change—i.e. if some debts increase and some do not—as illustrated by
how making a network “more symmetric” can decrease e�ciency (in Section 5).
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being shocked, Bj prefers not to exercise its default option, which renders the dilution option

moot (cf. equation (3)).14

Bj su↵ers when Bi is shocked and it is not, i.e. when it makes its repayment and Bi

exercises its default-dilution option. But it benefits in the symmetric case, i.e. when it

exercises its option and Bi does not. Liquidity gets transferred from the bank with liquidity

to the bank that needs it: Zero-net long-term debt has positive net present value. Per the

result, increasing debt increases overall e�ciency.15

That is not so in the short-term debt benchmark (and most other models), in which

zero-net debts have zero NPV at most (Lemma 2). The reason is that short-term debt,

being due right away, cannot be diluted: The claims on the left side of bank balance sheets

increase debt capacity but the liabilities on the right decrease it; they cancel each other out

at best.

We turn to network connectedness next.

Proposition 3 (Delta connectedness). Suppose ` is su�ciently large and exactly one bank

is not shocked (|1� �| = 1).

(i) The ring network is the most e�cient among all regular networks with Fi◆ > ✓y.

(ii) For any �, there is a �-connected network that is strictly less e�cient than a ring.

This is the counterpart of Lemma 3. It says that more connectedness is a good thing. The

ring network, in which every bank has a large exposure to another, is the best in a class

(given a single shocked bank). It is better not to weaken interbank exposures in the sense

that making � small could lead to a strictly worse outcome. Intuitively, � captures how much

liquidity can transmit between two components, so when � is low, liquidity cannot flow from

banks that have it to banks that need it.
14This mechanism is self-enforcing, in that, as banks cannot avoid being diluted, they are committed

ex ante to transfers they would prefer not to make ex post. Leitner (2005) uncovers another self-enforcing
mechanism to transfer liquidity in financial networks: Healthy banks commit to transfer liquidity to distressed
ones by exposing themselves to their default through the network.

15E�cient “dilutable debt” also appears in Diamond (1993), Donaldson, Gromb, and Piacentino (2020,
2021b), and Hart and Moore (1995).
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We turn to the long-term-debt counterpart to short-term debt’s default radius around a

shocked bank. It is a “salvation radius” around a healthy bank.

Proposition 4 (Salvation radius). Let F be a regular network with Fi◆ ⌘ F and suppose

that exactly one bank, say Bj, is not shocked and that it does not default. Define dLT := F
`�✓y .

(i) If dj!i < dLT , then Bi is not liquidated.

(ii) If no bank is liquidated, then dj!i < dLT for all i.

This is the counterpart of Lemma 4. It says that the harmonic distance captures not only

how defaults transmit from shocked to healthy banks in short-term debt networks, but also

how the option to dilute allows liquidity to flow from healthy to shocked banks in long-term

ones. It defines a radius around a not-shocked bank within which no bank is liquidated.

AOT’s link between the harmonic distance and the bottleneck parameter also applies to

our long-term debt network—it relies on only network structures, not equilibrium behavior.

Hence we have the next result:

Proposition 5 (Bottleneck connectedness). Suppose the conditions of Proposition 4 are

met and that, additionally, the network F is symmetric. Define �LT := 4
q

`�✓y
NF and �LT :=

min
�

`�✓y
2NF , 1

 
.

(i) If � > �LT
, then no bank is liquidated.

(ii) If � < �LT , then at least one bank is liquidated.

This is the counterpart of Lemma 5. It captures the idea that if all banks are closely

connected, one bank’s excess liquidity can flow through the system to save all banks and,

conversely, if they are not, it cannot. Specifically, if at least two components are not closely

connected (� is small), the banks in one can raise little liquidity by diluting their liabilities

to banks in the other. What they can raise can be so limited that they end up unable to

save themselves from liquidation.
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5 E�ciency and the Exponential Network

Here we define constrained e�ciency and construct a class of networks—the “exponential

networks”—that implement it. We conclude the section with an example contrasting com-

plete and exponential networks, which captures the main ideas.

Definition 7 (Planner’s problem and constrained e�ciency). The planner’s problem is to

find a set of transfers {ti}i for each �, with ti paid to each Bi, to minimize the number of

liquidated banks
���i : ✓y + ti � `�i < 0

 �� subject to each bank’s liquidity constraint ti �

min{`�i � ✓y, 0} and to liquidity being conserved
P

ti  0.

A network is constrained e�cient if the equilibrium is no less e�cient than the planner’s

solution.

In words, the planner wants to minimize the number of liquidated banks by transferring

liquidity within the system. It must respect the limited pledgeability friction—it cannot

raise more from any one bank than the net liquidity it has (that is no more than ✓y from

a not-shocked bank and zero from a shocked one, per the constraint ti � min{`�i � ✓y, 0},

given ` > ✓y). The next result characterizes the solution.

Lemma 6 (Constrained e�ciency). A network is constrained e�cient if the number of

liquidated banks is

L⇤ := max

⇢
0 ,

⇠
S`�N✓y

`� ✓y

⇡�
(10)

for each state �, where S denotes the number of shocked banks.

It turns out that the social planner should generally raise as much liquidity as possible from

each not-shocked bank, levying the tax �ti = ✓y if �i = 0, and transfer shocked banks either

just enough liquidity to survive or none at all, i.e., either ti = ` � ✓y or ti = 0 if �i = 1.

Using S and L to denote the numbers of shocked and liquidated banks, the planner’s budget

constraint says that the total subsidy—the transfer ` � ✓y to each of the S � L shocked

banks that is not liquidated—must be less than the total tax—the transfer ✓y from each of
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the N � S banks that is not shocked:

(S � L)(`� ✓y)  (N � S)✓y. (11)

Solving for the smallest positive integer L that satisfies the above gives the result.

That argument points to two key properties of the planner’s solution, both of which help

avoid “wasting liquidity”:

(i) It extracts the maximum tax from not-shocked banks, since they are not liquidated

anyway.

(ii) It gives nothing to liquidated banks, since, analogously, they are liquidated anyway.

We aim to construct a network with both properties (Proposition 6 below). We now build

up to it in steps, showing how to achieve one and then the other, starting with the first:

Lemma 7 (High debt mutualizes assets). Let F be a connected network. If ↵ is su�ciently

large, then in the equilibrium of ↵F either (i) all not-shocked banks make the maximum net

payment, Ri◆ �Ri✓ = ✓y, or (ii) no bank is liquidated.

This says that if debts are su�ciently high and liquidity is su�ciently scarce (in the sense

that at least one bank is liquidated), then each not-shocked bank provides the maximum

amount of liquidity. Intuitively, to increase interbank debts is to make each bank’s assets a

larger fraction of others’ balance sheets—it “mutualizes” the banking system, making each

bank more like the whole system.16, As a result, when liquidity is scarce overall, no surviving

bank retains excess liquidity. In contrast, if liquidity is not scarce then no bank is liquidated

if debt levels are su�ciently high:

16This role of default in facilitating a socially e�cient transfer of liquidity contrasts with the literature,
in which it typically constitutes a social cost, facilitating rent extraction at best (see Farboodi (2021) and
Perotti and Spier (1993)).
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Corollary 1 (First best with high debt for small shocks). Let F be a connected network and

suppose that N✓y > S` (i.e. L⇤ = 0). If ↵ is su�ciently large, then no bank is liquidated in

the equilibrium of ↵F.

The second property—that liquidated banks are transferred nothing—points to how the

planner’s allocation is necessarily discriminatory: It prioritizes some shocked banks over

others. (If in contrast, it allocated the excess liquidity equally among all shocked banks it

ends up saving none of them unless it can save them all. As we illustrate in an example

below, that symmetry makes the complete network “robust yet fragile,” per AOT’s result.)

That suggests that whenever liquidity is scarce (S is large) a network must be asymmetric

to be (constrained) e�cient. The following definitions characterize ways in which a network

can be asymmetric.

Definition 8 (Assortativity). A network F is assortative if

Fi!k > Fi!l =) Fj!k > Fj!l (12)

for all distinct i, j, k, and l.

In words, a network is assortative if whenever Bi owes more to one bank than another, so

does Bj. Assortativity allows us to rank banks unambiguously by the size of their interbank

liabilities. The next definition quantifies/controls that ranking.

Definition 9 (s-dominance). For a network F, Bi’s liabilities are s-dominated for s 2 (0, 1),

if there is a permutation ⇡i on {1, ..., N} with ⇡i(i) = i, such that

Fi!⇡i(j+k)

Fi!⇡i(j)
 sk (13)

for all j and k � 0 such that j 6= i and j + k 6= i.

In words, for s < 1, Bi’s liabilities to others decay rapidly—its second largest liability is only
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at most a fraction s of its largest, and so on. (The permutation ⇡i in the definition just

ranks the debts by size.)

Together the definitions above define what we call exponential networks:

Definition 10 (Exponential networks). A network is an exponential network (with base s)

if it is connected, it is assortative, and Bi’s debts are s-dominated for all i.

In words, every bank’s debt to B2 is only at most a fraction s of its debt to B1 and so on—the

permutation ⇡i in Definition 9 ranks each bank’s creditors the same way (assumed w.l.o.g.

to be the same as their index ordering per Definition 8). The exponential network generates

an approximately exponential distribution of bank asset size, y + Fi◆.17,18

The next two results characterize the payments made to liquidated banks in an exponen-

tial network.

Lemma 8 (Controlling relative payments to liquidated banks). Suppose F is an exponential

network with base s and let Bi⇤ be the largest liquidated bank. For each other liquidated bank

Bj,

Rj✓  sj�i⇤Ri⇤✓. (14)

This says that when debt levels in the network are exponentially controlled (given s-dominance),

so are the repayments to liquidated banks in equilibrium.

The previous result says that s controls the relative payments among liquidated banks.

The next says that it controls the total payment to all of them.

Lemma 9 (Controlling total payments to liquidated banks). Suppose F is an exponential

network with base s. If at least one bank is liquidated in equilibrium, then

X

i2L

Ri✓ <
`� ✓y

1� s
, (15)

17The network thus captures the empirical fact that bank size decays rapidly. That is often modeled with a
Pareto distribution, which fits the distribution of large banks well. Small banks are smaller than it predicts,
however, in line with the exponential distribution (Janicki and Prescott (2006)).

18Another paper in which intermediation networks give rise to an endogenous bank size distribution is
Farboodi, Jarosch, and Shimer (2017).
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where L denotes the set of liquidated banks.

This says that the total transfer to liquidated banks can be made arbitrarily close to a single

shocked bank’s liquidity shortfall, ` � ✓y, by making s su�ciently small. Intuitively, for

small s, the liquidity wasted by transferring it to banks that end up being liquidated anyway

would barely have been enough to save even a single one of them (per property (ii) above).

To sum up, if debts are large then no liquidity is wasted on banks that would not have

been liquidated anyway (Lemma 7) and if the network is exponential then little is wasted

on those that would have been (Lemma 9). The next result builds on these findings to show

how to achieve constrained e�ciency.

Proposition 6 (E�ciency of exponential networks). Define

s⇤ := 1� `� ✓y

N✓y � S`+ (1 + L⇤)(`� ✓y)
. (16)

Let F be an exponential network with base s  s⇤. For ↵ su�ciently large, ↵F is constrained

e�cient as long as
S`�N✓y
`�✓y is not an integer.

In words, an exponential network with a rapidly decaying distribution of debts is optimal in

all but a knife-edge case (i.e. all but the case in which S`�N✓y
`�✓y is an integer).

This result has a limitation when achieving constrained e�ciency requires almost all

of the liquidity available, i.e. when the slack in inequality (11) becomes small for L = L⇤

((N�S)✓y� (S�L⇤)(`�✓y) ! 0). In this case, s⇤ becomes small so the largest bank in the

exponential network is many times larger than the second largest one, and so on. Moreover,

in the limit when it equals zero, the network does not achieve constrained e�ciency—that

is the integer case from the proposition. But the next result suggests this limitation is not

too worrisome if we accept a weaker notion of e�ciency:

Proposition 7 (Approximate e�ciency of exponential networks). Let F be an exponential

network with base s  1/2. For ↵ su�ciently large, ↵F is “almost constrained e�cient” in

that at most L⇤ + 1 banks are liquidated.
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Finally, we point out that even in the knife-edge case in which the exponential network

does not achieve constrained e�ciency, no other connected network does either.

Lemma 10 (Ine�ciency of other networks). Suppose S`�N✓y
`�✓y is an integer and S` > N✓y and

that F is fully connected in that Fi!j > 0 for all i 6= j. The equilibrium is not constrained

e�cient.

This result suggests that the exponential network is the “best” no matter the parameters.19

Exponential network example. Finally, we consider an example to illustrate (i) how

a complete network leads to ine�cient liquidation by allocating liquidity to banks that end

up being liquidated in equilibrium and (ii) how an exponential network solves the problem.

The illustration requires that shocks are large enough that at least one bank is liquidated

in the constrained-e�cient outcome (otherwise a complete network can save all banks).

Hence we consider three banks, two of which are shocked: There are N = 3 banks with

assets y = 2, a fraction ✓ = 1/2 of which is pledgeable. Exactly two banks su↵er shocks,

S ⌘
P

�i = 2, of size `. We assume that ` = 8/5 so that in the constrained-e�cient outcome

exactly one bank is liquidated in each state: ` < 3✓y < 2` (i.e. 8/5 < 3 < 16/5). Observe

that covering either shocked bank’s liquidity shortfall requires at least 3/5 of the other’s

surplus: `� ✓y = 3✓y/5.

We start with the complete network as benchmark and show that both shocked banks

are always liquidated. Then we illustrate how the exponential network saves one of them,

achieving the constrained-e�cient outcome.

Complete network benchmark. Suppose each bank has total liablities Fi◆ ⌘ F to others

(F/2 to each of the other two). For each state �, equation (5) gives the system the clearing

vector R◆ = [Ri◆]i must solve (the full matrix of equilibrium repayments is then given by

the pro rata shares Ri!j = F̂i!jRi◆ by equation (1)). When the shocked banks are B1 and

19As the proof of Lemma 10 implies, a network that is not fully connected could do better for some
realizations of � but not for all.
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B2, the system is:

8
>>>>>>>>><

>>>>>>>>>:

R1◆ = max
n
0 , min

�
�3

5 +
1
2R2◆ + 1

2R3◆ , F
 o

,

R2◆ = max
n
0 , min

�
�3

5 +
1
2R1◆ + 1

2R3◆ , F
 o

,

R3◆ = max
n
0 , min

�
1 + 1

2R1◆ + 1
2R2◆ , F

 o
.

(17)

The first two lines of the system illustrate the problem with the complete network. The

repayments from the bank with excess liquidity, B3, are allocated equally between the two

banks with a liquidity shortfall, B1 and B2—each gets 1
2R3◆ (plus a symmetric transfer from

the other shocked bank, 1
2R2◆ or 1

2R1◆). But each bank needs more than that to survive.

Allocating scarce resources equally means that no one has enough.

As the system is symmetric, the problem is analogous when the other pairs of banks are

shocked. Solving it gives Ri◆ = 0 if �i = 1 and Ri◆ = min{F, 1} otherwise, implying that

both shocked banks are always liquidated (equation (4)).

Exponential network. Now we turn to an exponential network with base s = 1/2:

F =

2

64
0 2 1

2 0 1
2

1 1
2 0

3

75 . (18)

Note that the o↵-diagonal entries in each row and column are decreasing (assortativity per

Definition 8) and that each is at most a fraction 1/2 of the previous (s-dominance per

Definition 9). We can compute each bank’s total liabilities Fi◆ (the row sums of F) and the

fraction of its payments it makes to each other bank (F normalized by Fi◆) :

F◆ =

2

64
3
5
2
3
2

3

75 & F̂ =

2

64
0 2

3
1
3

4
5 0 1

5
2
3

1
3 0

3

75 . (19)

23



It turns out that no matter what pair of banks is shocked, only one is liquidated. To

see why, consider the case in which B1 and B2 are shocked. In that case, the clearing vector

solves (substituting from equation (19) into equation (5)):

8
>>>>>>>>><

>>>>>>>>>:

R1◆ = max
n
0 , min

�
�3

5 +
4
5R2◆ + 2

3R3◆ , 3
 o

,

R2◆ = max
n
0 , min

�
�3

5 +
2
3R1◆ + 1

3R3◆ , 5
2

 o
,

R3◆ = max
n
0 , min

�
1 + 1

3R1◆ + 1
5R2◆ , 3

2

 o
.

(20)

The first two lines of the system illustrate how the exponential network allocates liquidity

e�ciently. The repayments from B3, the bank with excess liquidity, are allocated primarily

to one of the two banks with the liquidity shortfall—B1 gets 2
3 of B3’s total repayment, B2

only 1
3 of it. And that allows B1 to survive. B2 is liquidated. But that is (constrained)

e�cient as there are not enough resources to save them both anyway.

Solving the system gives the clearing vector R◆ =
�

3
35 , 0,

36
35

�
, which, having only one

zero entry, a�rms that only B3 is liquidated (equation (4)).

The other cases are analogous. When B1 and B3 are shocked the clearing vector is

R◆ =
�
3
7 ,

9
7 , 0
�
, implying only B3 is liquidated, and when B2 and B3 are shocked it is

R◆ =
�
39
35 ,

1
7 , 0
�
, implying only B3 is.

6 Extensions

Under our baseline assumptions (i) liquidation is always ine�cient and (ii) default absent

liquidation is costless. Here we relax these assumptions (albeit only for specific networks).

We show how to choose debt levels to balance the benefit of high debt in providing liq-

uidity to avoid ine�cient liquidation per the baseline with the cost of inducing excessive

continuation/default included here.

We also relax the assumption that all banks are identical. Using results from computer
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science, we show conditions under which the exponential network implements/approximates

the constrained e�cient outcome in this case.

6.1 Risky Assets and Too Few Liquidations

So far, we assumed that y was su�ciently large that liquidation was always ine�cient. Now

we assume that y can have any value (but is the same for all banks). Thus it is e�cient

for all shocked banks to be liquidated if y is low but not if it is high. Here we denote the

threshold below which liquidation is e�cient by y⇤ and we show how to choose debt levels

in a complete network to implement the e�cient liquidation policy.20

We consider a complete network with debt levels F , focusing on the case in which S` <

N✓y for all y (so, in principle, no bank need be liquidated: L⇤ = 0 in Lemma 6). As

the network is symmetric, each shocked/not-shocked bank makes and receives the same

payments; we index all shocked banks’ payments by s and not-shocked banks’ by n. From

equation (7), the payment to each type is a pro rata share of the repayment made by all

other banks of that type and by all banks of the other type. Hence the equilibrium equations

for any y are:

8
>>>>><

>>>>>:

Rs◆ =


min

⇢
F , ✓y � `+

1

N � 1

⇣
(S � 1)Rs◆ + (N � S)Rn◆

⌘��+
,

Rn◆ =


min

⇢
F , ✓y +

1

N � 1

⇣
SRs◆ + (N � S � 1)Rn◆

⌘��+
.

(21)

Solving gives the equilibrium repayments:

8
>>><

>>>:

Rs◆ =
⇥
F � N�1

N�S (`� ✓y)
⇤+

,

Rn◆ = F,

(22)

20If paying ` represents a physical cost, then (1 � ✓)y⇤ = `, i.e. the cost of liquidation equals the cost
of continuation. If it includes a transfer to unmodeled creditors (like AOT’s “outside obligation” v), then
y⇤ < `. Working with a general y⇤ allows us to stay agnostic on the interpretation of `.
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with shocked banks being liquidated whenever F < N�1
N�S (`�✓y). Thus the e�cient outcome is

implemented—banks are liquidated if y < y⇤ but not if y � y⇤—by setting F = N�1
N�S (`�✓y⇤).

Intuitively, no matter the value of y, high debts allow banks to raise liquidity. In the

baseline, that is only a good thing. Here, it can be bad. But an appropriately chosen debt

level implements the e�cient outcome no matter the value of y.

6.2 Costly Default

So far, we assumed that, while liquidation entailed a deadweight loss, default was just a

transfer. Thus we found that higher debts always (weakly) increased e�ciency (in the sense

of Proposition 2). An alternative notion of e�ciency could minimize defaults as well as

liquidations. Here we show that an exponential network can achieve this goal if the debt

levels are not too high, albeit only in an example.

Here we return to the three-bank exponential network in the example in Section 5 and

replace the network F in equation (18) with ↵F, so increasing ↵ increases indebtedness.

Recall that the parameters are such that with two shocked banks the constrained e�cient

number of liquidations is one. As shocked banks always default (see equation (4)), the

constrained e�cient number of defaults is two. In the example in Section 5, we achieve the

e�cient number of liquidations, but not of defaults (all three banks default). Here we do

both.

We achieve both goals by reducing the debt. To see that, set ↵ = 5/8 and observe that

the clearing vector equilibrium payment is R◆ = ( 1
40 , 0,

15
16): B1 is not liquidated and B3 does

not default. (But reducing the debt too much undermines the flexibility to avoid liquidation.

If debt is too low, say ↵ = 1/2, then the clearing vector is R◆ = (0, 0, 34): Both B1 and B2

are liquidated.)

Overall, debt should be high enough to allow banks to raise liquidity, but, as in Sec-

tion 6.1, it should not be too high, this time because that would lead to unnecessary costly

defaults.
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6.3 Heterogeneous Banks

So far, we assumed that all banks had the same assets in place and the same size liquidity

shocks. Now we allow them to be heterogeneous, with yi denoting Bi’s assets and `i the size

of its potential liquidity shock. We denote the deadweight loss of liquidating Bi by �i � 0

(with the interpretation described in footnote 20).

We start with a generalization of the planner’s problem to this environment:

Definition 11 (Generalized planner’s problem (PP)). The (generalized) planner’s problem

is to find a vector of transfers t for each �, with ti paid to each Bi, to minimize the total

deadweight loss of liquidation,

minimize
NX

i=1

{✓yi+ti<`i�i}�i, (23)

subject to (i) each bank’s liquidity constraint

ti � min{`i�i � ✓yi, 0} (24)

and (ii) total liquidity being conserved

NX

i=1

ti  0. (25)

Observe that if �i is the same for all banks, then the objective is just to minimize the number

of liquidations. If `i� ✓yi is also the same, the constraints are too and the problem coincides

with the planner’s problem in Definition 7.

We next show that the problem of choosing transfers among banks is equivalent to that

of choosing the set of banks to liquidate, with e↵ectively the same objective and subject to

the same constraint on aggregate liquidity:

Definition 12 (Knapsack problem (KP)). Find a vector of binary variables x 2 {0, 1}N for
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each �, with xi = 0 if Bi is liquidated, to minimize the deadweight loss,

minimize
NX

i=1

(1� xi)�i, (26)

subject to liquidity being conserved

NX

i=1

xi�i(`i � ✓yi) 
NX

i=1

(1� �i)✓yi. (27)

In computer science, this problem is called the “knapsack problem,” as it describes a problem

of finding the most valuable set of objects to put in a knapsack subject to a constraint on

their total weight, just as ours describes finding the most valuable set of banks to save subject

to a constraint on the total liquidity required, an equivalence formalized in the next result:

Proposition 8 (The planner’s problem is the knapsack problem). PP in Definition 11 is

equivalent to KP in Definition 12 in that (i) if t̂ solves PP then x̂ with x̂i := {✓yi+t̂i�`i�i}

solves KP and (ii) if x̌ solves KP then ť with ťi := �ix̌i(`i � ✓yi)� (1� �i)✓yi solves PP.

The knapsack problem is hard to solve (it is NP-hard, in the language of computer science).

Hence algorithms have been developed that deliver approximate solutions quickly. One is

the “greedy algorithm,” defined in our context as follows:

Definition 13 (Greedy algorithm). Suppose banks are ranked by a permutation ⇡�1
on

{1, ..., N}, so ⇡(r) is the index of the r-th highest ranked bank. For each B⇡(r), set x⇡(r) = 1

if either �⇡(r) = 0 or if

rX

r0=1

�⇡(r0)

�
`⇡(r0) � ✓y⇡(r0)

�


NX

r0=1

�
1� �⇡(r0)

�
✓y⇡(r0). (28)

In words, for any ranking of banks, the greedy algorithm goes through them sequentially,

saving the highest-ranked shocked banks until liquidity runs out (and saving all not-shocked

banks as well).
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We now show that an exponential network can implement the greedy algorithm:

Proposition 9 (Exponential networks implement the greedy algorithm). Let banks be or-

dered by the ranking ⇡ in Definition 13: i = ⇡(i). There exists a threshold s⇤ such that the

exponential network ↵F with base s < s⇤ implements the outcome obtained by the greedy

algorithm when ↵ is su�ciently large.

This result embodies the idea that the exponential network, like the greedy algorithm, pri-

oritizes what banks should be saved. The result does not depend on the priority ranking

given by ⇡.

But the e�ciency of the outcome does depend on the priority ranking. The next definition

helps define a useful one:

Definition 14 (Profitability index). The profitability index of a bank Bi is the ratio of the

benefit to the cost of avoiding liquidation when it is shocked:

PIi :=
�i

`i � ✓yi
. (29)

The profitablity index here is akin to the eponymous ratio in capital budgeting, namely the

ratio of the payo↵ to costs. The greedy algorithm corresponds to the rule prescribed for

investment under capital constraints and mutually exclusive projects: Undertake those with

the highest profitability indices.

When banks are ranked by their profitability indices, the greedy algorithm, and hence an

exponential network, is optimal in some circumstances and nearly optimal in many others:

Corollary 2 (Optimality of exponential network with common costs). Suppose all shocked

banks have the same liquidity shortfall: `i � ✓yi = `j � ✓yj for all i and j and let banks be

ordered by their profitability indices, PIi � PIj for i  j. An exponential network solves the

planner’s problem in Definition 11.

Given Proposition 9, the result says that if the cost of saving every bank is the same, then

saving those with the highest benefit delivers the optimum.

29



The algorithm need not be optimal, but it is nearly optimal if the liquidated banks are

small:

Corollary 3 (Approximate optimality of exponential network with small banks). As in

Lemma 8, let i⇤ be the index of the first liquidated bank. An exponential network can deliver

a deadweight loss within �i⇤ of the solution to the planner’s problem in Definition 11.

This result, which follows from an application of linear programming to the knapsack problem

in Dantzig (1957), implies that the relative ine�ciency of the greedy algorithm is small if

banks are small, in particular if the deadweight loss of liquidating a single bank, namely Bi⇤ ,

is small. The result also has an analogy in capital budgeting heuristics: If you use your entire

budget, then doing those investments with highest profitability is optimal. In general, the

risk is that, due to indivisibility, doing those investments might leave some of your budget

unused. That risk is small if investments are small. Although the greedy algorithm could still

be far from optimal when �i⇤ is large, limiting results elsewhere in that literature suggest

that the greedy algorithm is close to optimal on average (see Calvin and Leung (2003)).

Overall, the results here add support to our finding that exponential networks implement

a robust policy. The (approximate) e�ciency of the priority rule is not specific to the case

in which all banks have the same size of assets in place or liquidity shocks.

7 Conclusion

We revisit systemic risk in financial networks, allowing interbank debts to be long-term,

as they often are in practice. We show that the right network of long-term debts provides

insurance and can even implement the optimal contingent transfers. We thereby extend the

idea that debt embeds contingencies via the option to default by showing that it embeds

another option—the option to dilute—and that arranging debts in a network can induce its

optimal exercise, even leading to the constrained-e�cient outcome in fairly general circum-

stances. Dilution can substitute for policies that mitigate systemic risk by imposing losses on
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creditors (e.g., Bernard, Capponi, and Stiglitz (2021)): It implements a “backdoor bail-in,”

allowing debtors to avoid insolvency by shifting the cost distress onto diluted creditors.
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A Proofs

A.1 Proof of Lemma 1 (Isomorphism between benchmark and

AOT)

In AOT, the clearing vector is completely described by (Lemma B2, equation (B3)):

x =
h
min

�
y1 , Qx+ e+ ⇣A1

 i+
. (30)

In the case in which long-term assets are fully destroyed in default, the ⇣ = 0 case, the

equation can be re-written as

x =


min

⇢
y1 , Qx+

a� v

a� v + A
(a� v + A)1� ✏�

��+
, (31)

having used that, by definition, e = a� v � ✏� (with no cash, AOT’s ci ⌘ 0) and denoting

the profile of shock indicator, a notation AOT do not use, by �, as in our baseline. This is

equivalent to the the equilibrium in our short-term debt benchmark, which per Definition 1

is given by

R◆ =
h
min

�
F◆ , F̂>R◆ + ✓y1� `�

 i+
, (32)

where the color coding represents the mapping between the notation in the two papers, as

described in Table 1.

In both models, the banks default whenever they cannot repay the face value of their

debts; hence the sets of defaulting banks coincide. Likewise, in both, all defaulting banks

are liquidated; hence e�ciency coincides too (see Definition 2).

A.2 Proof of Lemma 2 (Netting in short-term benchmark)

This proof generalizes AOT’s proof of their Proposition 3. The idea is to show that in the

equilibrium of ↵F for ↵ > 1, each bank’s shortfall F◆ � R◆ is greater than it is in the
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Table 1: Notations in AOT and here.

AOT This paper
Face value of debt yji Fi!j

Payment received [Qx]i [F̂>R◆]i
Negative shock a� v � ei `�i

Total assets a� v + A y
Pledgeable assets a� v ✓y
Non-pledgeable assets A (1� ✓)y

equilibrium of F and therefore so is the number of defaults.

Lemma A.1. Define the mapping

 ↵ : D 7!
h
min{↵F◆ , F̂>D� ✓y1+ `�}

i+
. (33)

If R↵
◆ is a clearing vector of ↵F, then the “shortfall” D↵ := ↵F◆ �R↵

◆ is a fixed point of

 ↵.

Proof. We compute, using Q ⌘ F̂>:

↵F◆ �R↵
◆ = ↵F◆ �max

�
0,min{↵F◆,QR↵

◆ + ✓y1� `�}
 

(Payment Eqm.)

= min
�
↵F◆ , max{0,↵F◆ �QR↵

◆ � ✓y1+ `�}} (Combining)

=
h
min

�
↵F◆ , ↵F◆ �QR↵

◆ � ✓y1+ `�
 i+

(Interchange min/max)

=
h
min

�
↵F◆ , Q(↵F◆ �R↵

◆)� ✓y1+ `�
 i+

(zero-net debt)

Substituting from the definitions of D↵ and  ↵ gives the result.

Now we show that for ↵ > 1, any fixed point of  ↵ is greater thanD1—i.e. that increasing

debt levels increases default:

Lemma A.2. Let D1
be a fixed point of  1

and define

H
↵ :=

NY

i=1

⇥
D1

i ,↵Fi◆] (34)
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For ↵ > 1,  ↵
maps H

↵
into itself, i.e.  ↵

�
H

↵
�
⇢ H

↵.

Proof. The upper bound, i.e. that  ↵(D↵)  ↵F◆, follows immediately from the definition

of  ↵ as a minimum.

So we need only to show the lower bound, i.e. that  ↵(D↵) � D1 for all D↵ 2 H
↵. We

have that for D↵ 2 H
↵, D1  D↵ by definition of the domain. Thus we can compute:

 ↵(D↵) =
h
min

�
↵F◆ , QD↵ � ✓y1+ `�

 i+
(35)

�
h
min

�
↵F◆ , QD1 � ✓y1+ `�

 i+
(36)

�
h
min{F◆,QD1 � ✓y1+ `�}

i+
(37)

⌘  (D1) ⌘ D1, (38)

since D1 is a fixed point of  1 by definition.

Combining the two lemmata above and applying Brouwer’s theorem, we have that for

↵ > 1, an equilibrium of ↵F is a fixed point of a mapping on H
↵. Therefore the generically

unique21 clearing vector, being in H
↵, exceeds D1.

A.3 Proof of Lemma 3 (Delta connectedness in short-term bench-

mark)

This proof mirrors AOT’s proof of their Proposition 6; we translate it to our notation, adapt

it to our notion of e�ciency, and add some details.

Throughout we write F := Fi◆, w.l.o.g., given the network is regular by assumption.

Proof of statement (i). We show, by verification, that in equilibrium all banks are

liquidated and, therefore, no network is less e�cient than the ring. Assuming all banks are

liquidated and letting the single shocked bank be B1, w.l.o.g., the equilibrium is the solution

21Generic global uniqueness follows from the isomorphism to AOT (Lemma 1) and the generic uniqueness
of their equilibrium.
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to 8
><

>:

R1!2 =
⇥
✓y � `+RN!1

⇤+

Ri!i+1 = ✓y +Ri�1!i i 2 {2, ..., N},
(39)

with the convention that N + 1 := 1 for indices. Solving, we have the equilibrium: R1◆ = 0

and, for i > 1, Ri!i+1 = (i� 1)✓y  (N � 1)✓y, which is less than F by hypothesis. I.e., all

banks are liquidated.

Proof of statement (ii). Here we show that if F is �-connected and � is small, then

not all banks are liquidated and, therefore, the network is more e�cient than the ring (in

which they are). To do so, we show two lemmata.

Lemma A.3. Let B be a subset of banks (not equal to all banks). Suppose that the single

shocked bank is not in B. If F is �-connected with � < ✓y
NF , then

X

i2B

X

j2Bc

Ri!j < ✓y|B|. (40)

The result says that the total payment from banks in B to those in B
c is small when �

small.

Proof. By the definition of delta-connectedness, Fi!j  �F, for all (i, j) 2 B ⇥ B
c. Thus

Ri!j  Fi!j  �F, for all i 2 B and j 2 B
c. Now summing i over B, summing j over B

c,

and using � < ✓y
NF < ✓y

|Bc|F , gives

X

i2B

X

j2Bc

Ri!j  �F |B||Bc| < ✓y|B|. (41)

Lemma A.4. Maintain the assumptions that the single shocked bank is not in B and that F

is �-connected with � < ✓y
NF . If inequality (40) holds, then not all banks in B are liquidated.

Proof. Suppose, in anticipation of a contradiction, that all banks in B are liquidated. Thus

for each Bj in B, Rj◆ = Rj✓ + ✓y. Summing over banks in B, we have that
P

j2B
Rj◆ =
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P
j2B

Rj✓ + ✓y|B|. Now just expand Rj◆ and Rj✓ into their component payments,

X

j2B

 
X

i2B

Rj!i +
X

i2Bc

Rj!i

!
=
X

j2B

 
X

i2B

Ri!j +
X

i2Bc

Ri!j

!
+ ✓y|B|, (42)

and cancel
P

j2B

P
i2B

Rj!i to get that

X

j2B

X

i2Bc

Rj!i =
X

j2B

X

i2Bc

Ri!j + ✓y|B| � ✓y|B| (43)

This contradicts equation (40), which says that the total payment from B to B
c is small.

A.4 Proof of Lemma 4 (Default radius in short-term benchmark)

The result is the same as AOT’s. Hence we omit the proof.

A.5 Proof of Lemma 5 (Bottleneck connectedness in short-term

benchmark)

Although the result is close to AOT’s Proposition 8, the proof is new, as AOT do not include

one.

We begin with a lemma that connects the bottleneck parameter � to the harmonic dis-

tance d:

Lemma A.5. Let F be a symmetric financial network of N banks. The bottleneck parameter

� satisfies

1

2N�
 max

i,k : i 6=k
dk!i 

16

N�2
. (44)

Proof. This is AOT’s Lemma 1 (p. 580). Hence we omit the proof.

With this we proceed to the two statements of the lemma.
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Proof of statement (i). For � > �ST ⌘ 4
q

✓y
NF , we have, from Lemma A.5, that

dj!i 
16

N�2
<

16

N(�ST )2
=

F

✓y
⌘ dST for all i 6= j, (45)

per the definition of dST in Lemma 4. That lemma implies that when Bj is shocked, then

each Bi defaults.

Proof of statement (ii). For � < �ST ⌘ min
�

✓y
2NF , 1

 
, we have, from Lemma A.5,

that, for some i,

dj!i �
1

2N�
>

1

2N�ST
= max

⇢
F

✓y
,

1

2N

�
⌘ max

⇢
dST ,

1

2N

�
� dST , (46)

per the definition of dST in Lemma 4. That lemma implies that when Bj is shocked, then

Bi does not default.

A.6 Proof of Proposition 1 (Existence and uniqueness)

Per Section 3, the clearing vector satisfies the same equations in the long- and short-term debt

network (only the sets of liquidated banks are di↵erent). Thus, given Lemma 1, existence

of and generic uniqueness of the clearing vector follow from the analogous results in AOT

(their Proposition 1, p. 572).

A.7 Proof of Proposition 2 (Netting)

The proof is similar to that of Lemma 2, but simpler because we work with repayments R◆

directly instead of “shortfalls” F◆ �R◆.

Define the mapping

�↵(R) :=
h
min

�
↵F◆ , QR+ ✓y1� `�

 i+
. (47)

Keeping in mind that Q ⌘ F̂>, the fixed point of �1 is a clearing vector of F.
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Lemma A.6. Let R1
◆ be a fixed point of �1

and define

I
↵ :=

NY

i=1

⇥
R1

i◆,↵Fi◆
⇤
. (48)

For ↵ > 1, �↵
maps I

↵
into itself, i.e. that �↵(I ↵) ⇢ I

↵
.

Proof. The upper bound, i.e. that �↵(R↵
◆)  ↵F◆, follows immediately from the definition

of �↵ as a minimum.

So we need only to show the lower bound, i.e. that �↵(R↵
◆) � R1

◆. For R↵
◆ 2 I

↵, we

can compute:

�↵(R↵
◆) =

h
min

�
↵F◆ , QR↵

◆ + ✓y1� `�
 i+

(49)

�
h
min

�
↵F◆ , QR1

◆ + ✓y1� `�
 i+

(50)

�
h
min

�
F◆ , QR1

◆ + ✓y1� `�
 i+

(51)

⌘ �1(R1
◆) ⌘ R1

◆, (52)

since R1
◆ is a fixed point of � by definition.

Given the lemma, we can apply Brouwer’s theorem, to conclude that for ↵ > 1, an

equilibrium of ↵F is a fixed point of a mapping on I
↵. Therefore the generically unique22

clearing vector, being in I
↵, exceeds R1

◆: All repayments are higher when ↵ is higher, so

there are fewer liquidations.

A.8 Proof of Proposition 3 (Delta connectedness)

Note that this proof makes use of the minimum number of liquidated banks, L⇤, derived in

Lemma 6, even though that result comes later in the text.

22Generic global uniqueness follows from Proposition 1.
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Throughout we assume, w.l.o.g., that the B1 is the not-shocked bank.

Proof of statement (i). Equation (4) and the fact that banks have zero net positions

(so no shocked bank can repay in full) imply that any shocked bank (i � 2) repays

Ri◆ ⌘ Ri!i+1 =
⇥
✓y � `+Ri✓

⇤+
(53)

=
⇥
✓y � `+Ri�1!i

⇤+
, (54)

having used the definition of the ring network (Definition 3).

The expression for Ri◆ implies that if Bi�1 is liquidated, then Bi is too. Thus the number

of banks that are not liquidated is the maximum index i for which Ri�1!i � `� ✓y.

We can now expand the condition recursively for any Bi that is not liquidated:

`� ✓y  Ri�1!i = ✓y � `+Ri�2!i�1 (55)

= k(✓y � `) +Ri�(k+1)!i�k (for k 2 {1, ..., i� 2}) (56)

= (i� 2)(✓y � `) +R1!2. (57)

So the number of banks that are not liquidated is

max

⇢
i  N : i� 1  R1!2

`� ✓y

�
= min

⇢
N ,

�
1 +

R1!2

`� ✓y

⌫�
. (58)

The number of liquidated banks is N minus the above:

L = max

⇢
0 ,

⇠
N � 1� R1!2

`� ✓y

⇡�
. (59)

For F > ✓y, per the condition of the proposition, R1!2 = ✓y and the minimum number of

liquidations is attained L = L⇤ (equation (10) with S = N � 1 and ` su�ciently large, per

the statement of the result).

Statement (ii). A trivial example su�ces: The “linkless” network—Fi!j = 0 for all i
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and j—is �-connected for any �; in it, all shocked banks are liquidated. That is less e�cient

than the ring network with F � ✓y, per statement (i).

A.9 Proof of Proposition 4 (Salvation radius)

We prove the two statements in turn. The arguments build on AOT’s proof of their Propo-

sition 8 (pp. 602–603). Ours are a bit more complicated because we cannot work with the

clearing vector R◆, but have to work with the shortfall D ⌘ F◆ �R◆ instead.

Statement (i). The proof comprises (somewhat involved) calculations using the shortfall

D, which ultimately allow us to bound the harmonic distance of the not-shocked banks to

any liquidated bank.

Throughout we denote the set of defaulting banks by D , that of liquidated banks by

L , and, hence, that of those that default but are not liquidated by D \ L . 1 denotes the

vector of all ones and I the identity matrix, each of appropriate dimension determined by

the context. Given the network is regular, we can write Fi◆ ⌘ F.

We start with two lemmata. Each takes as its starting point the equilibrium equation

for the shortfall

D =
h
min{F◆ , QD� ✓y1+ `�}

i+
, (60)

which follows from setting ↵ = 1 in Lemma A.1. The first lemma develops the equation for

banks that default but are not liquidated; the second for banks that are liquidated.

Lemma A.7. DD\L =
�
I�QD\L ,D\L

��1�
QD\L ,L 1F � (✓y � `)1

�
.

Proof. For banks that default, the shortfall is not zero, and for those that are not liquidated,

it is less than F . Hence for Bi in D\L , the second term under the “min” in equation (60)
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is the relevant one; writing that elementwise gives the following:

Di =
NX

k=1

QikDk � ✓y + ` (61)

=
X

k2L

QikDk +
X

k2D\L

QikDk +
X

k/2D

QikDk � ✓y + ` (62)

=
X

k2L

QikDk +
X

k2D\L

QikDk � ✓y + `, (63)

having used that shortfall is zero for banks that do not default (Dk = 0 for k 62 D). Re-

writing the above in block matrix form, using that fact that liquidated banks repay nothing

(Dk = F for k 2 L ), and rearranging gives:

DD\L = QD\L ,D\LDD\L +QD\L ,LDL � (✓y � `)1 (64)

= QD\L ,D\LDD\L +QD\L ,LF1� (✓y � `)1 (65)

= (I�QD\L ,D\L )�1(QD\L ,LF1� (✓y � `)1), (66)

where the last expression comes from solving for DD\L and rearranging.

Lemma A.8.
�
I+QL ,D\L (I�QD\L ,D\L )�1

��
`� ✓y

�
1 > Q̃F1, where

Q̃ :=
�
I�QL ,D\L (I�QD\L ,D\L )�1QD\L ,L �QL ,L

�
. (67)
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Proof. Banks that are liquidated repay zero (equation (4)), so

F <
NX

k=1

QikDk � ✓y + ` (68)

=
X

k2L

QikDk +
X

k2D\L

QikDk +
X

k/2D

QikDk � ✓y + ` (69)

=
X

k2L

QikDk +
X

k2D\L

QikDk � ✓y + ` (70)

=
X

k2L

QikF +
X

k2D\L

QikDk � ✓y + `, (71)

having used that shortfall is zero for banks that do not default (Dk = 0 for k 62 D) and F for

those that are liquidated (Dk = F for k 2 L ). The above can be re-written in block-matrix

notation, F1 < QL ,D\LDD\L + QL ,LF1 � (✓y � `)1, so the expression for DD\L from

Lemma A.7 can be substituted in to get:

QL ,D\L (I�QD\L ,D\L )�1(QD\L ,LF1� (✓y � `)1) +QL ,LF1� (✓y � `)1 > F1. (72)

Rearranging the above gives the expression in the lemma.

Now we compute a bound on the harmonic distance d. First we use the definition of d

(Definition 5) to write in block matrix form:

8
>>>><

>>>>:

dj!L = 1+QL ,Ldj!L +QL ,D\Ldj!D\L ,

dj!D\L = 1+QD\L ,Ldj!L +QD\L ,D\Ldj!D\L ,

(73)

where dj!L and dj!D\L are vectors that capture the harmonic distances from Bj to each of

(i) the liquidated and (ii) the defaulting but not liquidated banks, respectively (cf. equations

(B19) and (B20) in AOT). (NB: As, by hypothesis, Bj is the only not-shocked bank, there

are no additional terms to not defaulting banks.)
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Solving for the system in equation (73)—solving for dj!D\L in the second equation and

substituting it into the first—gives

dj!L = 1+QL ,Ldj!L +QL ,D\L (I�QD\L ,D\L )�1(1+QD\L ,Ldj!L ) (74)

or, given the definition of Q̃ in equation (67), Q̃dj!L = (I +QL ,D\L (I �QD\L ,D\L )�1)1.

From here, we can use Lemma A.8 to write

Q̃dj!L > Q̃
F

`� ✓y
1. (75)

As Q̃ is invertibe and elementwise non-negative,23 this says that if Bi is liquidated, then

dj!i �
F

`� ✓y
⌘ dLT , (76)

per the definition of dLT in the proposition. That is the desired result.

Statement (ii). As, by hypothesis, no bank is liquidated, we have that for any Bi

Di < Fi◆, from the definition of the shortfall D. Thus, from the equilibrium equation for

the shortfall (Lemma A.1 with ↵ = 1) and the observation that no shocked bank repays in

full, Di > 0 (equation (4) given the assumption that banks have zero net positions), we have

Di =
X

k 6=i

QikDk + `� ✓y, (77)

for any Bi for i 6= j, where, remember, Bj is the not-shocked bank. Dividing both sides of

equation (77) by ` � ✓y says that Di/(` � ✓y) solves xi = 1 +
P

k 6=i Qikxk for all i. By the

23The result follows Theorem 2 of Plemmons (1977) and exercise 5.8 of Berman and Plemmons (1979, p.
159) given that Q̃ is the Schur complement of the non-singular M -matrix


I�QD\L ,D\L �QD\L ,L

�QL ,D\L I�QL ,L

�
.
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definition (and uniqueness) of the harmonic distance, that implies that

dj!i =
Di

`� ✓y
. (78)

As Di < F by hypothesis, dj!i < F/(`� ✓y) ⌘ dLT , as desired.

A.10 Proof of Proposition 5 (Bottleneck connectedness)

We prove the two statements of the lemma sequentially. They rely on Lemma A.5 above

(which, recall, depends only on the network structure, not the maturity of debt despite being

stated within the short-term debt benchmark).

Proof of statement (i). For � > �LT ⌘ 4
q

`�✓y
NF , we have, from Lemma A.5, that

dj!i 
16

N�2
<

16

N(�LT )2
=

F

`� ✓y
⌘ dLT , (79)

per the definition of dLT in Proposition 4. That result implies that when Bj is not shocked,

then Bi is not liquidated.

Proof of statement (ii). For � < �LT ⌘ min
�

`�✓y
2NF , 1

 
, we have, from Lemma A.5,

that, for some i,

dj!i �
1

2N�
>

1

2N�LT
= max

⇢
F

`� ✓y
,

1

2N

�
⌘ max

⇢
dLT ,

1

2N

�
� dLT , (80)

per the definition of dLT in Proposition 4. That result implies that when Bj is not shocked,

then Bi does not default and, hence, not all banks are liquidated.

A.11 Proof of Lemma 6 (Constrained e�ciency)

The argument is in the text.
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A.12 Proof of Lemma 7 (High debt mutualizes assets)

To prove the result, we show that if a not-shocked bank, say Bi, makes net payment less

than ✓y no matter how high ↵ is, it is impossible that another bank, say Bj, is liquidated.

From equation (5), the not-shocked bank’s net payment is

Ri◆ �Ri✓ =

8
>><

>>:

✓y if defaults,

↵Fi◆ �Ri✓ otherwise.

(81)

Now suppose (in anticipation of a contradiction) that Bi’s payment is strictly less than

✓y and another bank, say Bj, is liquidated. From equation (2), that implies that

` > ✓y +Rj✓ (82)

= ✓y +
X

k 6=i,j

Rk!j +Ri!j (83)

= ✓y +
X

k 6=i,j

Rk!j + ↵Fi!j, (84)

having used the fact that Bi repays Bj in full (otherwise its net payment would equal ✓y).

The inequality cannot hold for large ↵ (as Fi!j > 0 by the assumption that the network

is connected). Thus either no bank is liquidated or Bi’s net payment cannot be less than

✓y.
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A.13 Proof of Corollary 1 (First best with high debt for small

shocks)

Suppose (in anticipation of a contradiction) that at least one bank is liquidated. From

Lemma 7 and equation (4), we know that for each Bi the net payment is

Ri◆ �Ri✓

8
>>>><

>>>>:

= ✓y � `�i if Bi is not liquidated,

> ✓y � `�i if Bi is liquidated.

(85)

Combining market clearing (equation (6)) with the expression above, we have that

0 =
X�

Ri◆ �Ri✓
�
>
X�

✓y � `�i

�
= N✓y � S`, (86)

contradicting the hypothesis that N✓y > S`. Therefore no bank can be liquidated, as

desired.

A.14 Proof of Lemma 8 (Controlling relative payments to liqui-

dated banks)

Here we use the pro rata condition that Ri!j = F̂i!jRi◆ for any j (including j = i⇤) to

write

Ri!j =
F̂i!j

F̂i!i⇤
Ri!i⇤ . (87)

Thus the total payment to any liquidated bank Bj is

Rj✓ =
X

i 6=j,i⇤

Ri!j +Ri⇤!j (88)

=
X

i 6=j,i⇤

F̂i!j

F̂i!i⇤
Ri!i⇤ , (89)
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having used that Ri⇤!j = 0 as any liquidated bank makes zero repayment (equation (4)).

Building on the above by substituting from the definition of s-dominance and adding the

non-negative term sj�i⇤Rj!i⇤ gives

Rj✓ 
X

i 6=j,i⇤

sj�i⇤Ri!i⇤ + sj�i⇤Rj!i⇤ = sj�i⇤Ri⇤✓. (90)

A.15 Proof of Lemma 9 (Controlling total payments to liquidated

banks)

Since liquidated banks make zero repayments, Ri◆ = 0 for i 2 L , equation (4) implies that

each receives payment Ri✓ < `� ✓y. Applying this to Bi⇤ , the largest liquidated bank, and

using Lemma 8, we have the following:

X

i2L

Ri✓ 
X

i2L

si�i⇤Ri⇤✓ (91)

 Ri⇤✓

1X

i=0

si (92)

= Ri⇤✓
1

1� s
(93)

<
`� ✓y

1� s
. (94)

A.16 Proof of Proposition 6 (E�ciency of exponential networks)

As the exponential network is connected, we know from Lemma 6 and Corollary 1 that if

L⇤ = 0 then no bank is liquidated as long as ↵ is high. Hence we focus on the case in which

at least one bank is liquidated in the constrained-e�cient outcome, L⇤ � 1.

Recall that in this case it su�ces to show the following:
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(i) Each bank that is not liquidated makes the maximum net payment it can without

being liquidated, Ri◆ �Ri✓ = ✓y � `�i, for Bi not liquidated.

(ii) The banks that are liquidated receive a total net payment that would be insu�cient

to save any one of them, �
P

i2L

�
Ri◆ �Ri✓

�
< `� ✓y.

The first property follows from Lemma 7 and equation (4).

The second property follows from two steps. The first is to use Lemma 9 and the definition

of s⇤ to bound the liquidated banks’ net payment in terms of L⇤:

�
X

i2L

�
Ri◆ �Ri✓

�
<

`� ✓y

1� s
(95)

 `� ✓y

1� s⇤
(96)

= N✓y � S`+ (1 + L⇤)(`� ✓y). (97)

The second step is to use market clearing,
PN

i=1

�
Ri◆ � Ri✓

�
= 0 by equation (6), to write

the LHS above in terms of the number of liquidated banks L, using that (i) not-shocked

banks make net payment ✓y (by Lemma 7) and (ii) shocked, not-liquidated banks make net

payment ✓y � ` (by equation (4)):

�
X

i2L

�
Ri◆ �Ri✓

�
=
X

i2L c

�
Ri◆ �Ri✓

�
(98)

=
X

i2L c :�i=0

�
Ri◆ �Ri✓

�
+

X

i2L c :�i=1

�
Ri◆ �Ri✓

�
(99)

= (N � S)✓y + (S � L)(✓y � `). (100)

Combining this with the bound in equation (97) and canceling terms says L < 1+L⇤. As L

and L⇤ are integers, and L⇤  L by Lemma 6, it must be that L = L⇤.

(The assumption that S`�N✓y
`�✓y not be an integer was required for for s⇤ > 0 and thus for

the exponential network with base s < s⇤ to be well defined.)
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A.17 Proof of Proposition 7 (Approximate e�ciency of exponen-

tial networks)

With the weaker notation of e�ciency, we need to show only that the banks that are liqui-

dated receive a total net payment insu�cient to save any two of them, �
P

i2L

�
Ri◆�Ri✓

�
<

2
�
` � ✓y

�
. Given the proof of Proposition 6, that is all we need to show. As in that proof,

it follows Lemma 9 along with the definitions of s⇤(= 1/2) and L⇤:

�
X

i2L

�
Ri◆ �Ri✓

�
<

`� ✓y

1� s⇤
(101)

= 2(`� ✓y) (102)

as desired.

A.18 Proof of Lemma 10 (Ine�ciency of other networks)

Suppose (in anticipation of a contradiction) that a fully connected network F achieves con-

strained e�ciency, i.e. that the number of liquidated banks is L⇤ = S`�N✓y
`�✓y , having used the

assumptions that S`�N✓y
`�✓y is an integer and that S` > N✓y in conjunction with the definition

of L⇤ (equation (10)).

As each bank that is not shocked pays at most ✓y and each that is shocked but not

liquidated pays exactly ✓y � `�i (equation (4)), we can use market clearing to bound the

total payment to the liquidated banks as follows:

�
X

i2L

�
Ri◆ �Ri✓

�
=
X

i 62L

�
Ri◆ �Ri✓

�
(103)


X

i 62L

(✓y � �i`) (104)

= (N � S)✓y + (S � L⇤)(✓y � `) (105)

= 0. (106)
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I.e. liquidated banks receive no (positive) payment.

But shocked, not-liquidated banks must receive positive payment (otherwise they would

be liquidated by equation (4)). Given the hypothesis that the network is fully connected,

that contradicts the assumption that payments are pro rata (equation (1)): Any bank that

has debt to a not-liquidated bank must have debt to a liquidated bank too and it cannot

make a positive payment to one but not the other.

A.19 Proof of Proposition 8 (The planner’s problem is the knap-

sack problem)

We prove each implication in turn.

(i) t̂ solves PP =) x̂ solves KP. We show that x̂ is feasible and optimal in turn.

• x̂ is feasible. Observe that, since, by equation (24), t̂i � �✓yi, x̂i�i(`i � ✓yi)  (1 �

�i)✓yi + t̂i. Thus, using the liquidity conservation constraint (equation (25)), we have

that

NX

i=1

x̂i�i(`i � ✓yi) 
NX

i=1

⇣
(1� �i)✓yi + t̂i

⌘


NX

i=1

(1� �i)✓yi, (107)

confirming that x̂ is feasible.

• x̂ is optimal. Suppose, in anticipation of a contradiction, that x̂ is not optimal, i.e.

that there is a feasible x̂0 that yields lower deadweight loss (equation (26)).

We now show that such an x̂0 cannot exist, because, if it does, t̂ cannot be a solution

to PP. Specifically, t̂0 with t̂0i := �ix̂0
i(`i�✓yi)� (1��i)✓yi is feasible and yields a lower

objective:

– Feasibility:

∗ We show that t̂0 satisfies the liquidity constraint (24) for �i = 0 and �i = 1
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in turn: If �i = 0, then t̂0i = �✓yi = min{�i`i � ✓yi, 0} and if �i = 1, then

t̂0i = x̂0
i(`i � ✓yi) � min{�i`i � ✓yi, 0}.

∗ We show that t̂0 satisfies the liquidity conservation constraint (25) as

NX

i=1

t̂0i =
NX

i=1

⇣
�ix̂

0
i(`i � ✓yi)� (1� �i)✓yi

⌘
 0, (108)

since x̂0 must satisfy the constraint (27) by its definition as a solution to KP.

– Optimality: Observe, from the definitions of x̂0
i and t̂i that

NX

i=1

{✓yi+t̂0i<`i�i}�i 
NX

i=1

(1� x̂0
i)�i <

NX

i=1

(1� x̂i)�i =
NX

i=1

{✓yi+t̂i<`i�i}�i, (109)

contradicting the optimality of t̂0.

Therefore x̂ solves KP.

(ii) x̌ solves KP =) ť solves PP. We show that ť is feasible and optimal in turn.

– ť is feasible. Observe that ťi satisfies Bi’s liquidity constraint (24) by construction:

ťi = �ix̌i(`i � ✓yi)� (1� �i)✓yi � min{�i`i � ✓yi, 0}.

– ť is optimal. Suppose, in anticipation of a contradiction, that ť is not optimal,

i.e. that there is a feasible ť
0
that yields lower deadweight loss (equation (23)).

We now show that such an ť
0
cannot exist, because, it if does, x̌ cannot be a

solution to KP. Specifically, x̌0 with x̌0
i := {✓yi+ť0i�`i�i�0} is feasible and yields a

lower objective:

∗ Feasibility: We show that x̌0
i satisfies the liquidity conservation constraint (27)

as

NX

i=1

x̌0
i�i(`i � ✓yi) 

NX

i=1

⇣
(1� �i)✓yi + ť0i

⌘


NX

i=1

(1� �i)✓yi, (110)
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since ť
0
must satisfy the constraint (25) by its definition as a solution to PP.

∗ Optimality: Observe, from the definitions of x̌0
i and ťi that

NX

i=1

(1� x̌0
i)�i 

NX

i=1

{✓yi+ť0i<`i�i}�i <
NX

i=1

{✓yi+ťi<`i�i}�i 
NX

i=1

(1� x̌i)�i, (111)

contradicting the optimality of x̌0.

Therefore ť solves PP.

A.20 Proof of Proposition 9 (Exponential networks implement the

greedy algorithm)

First note that Lemma 7, Lemma 8, and Lemma 9 hold with heterogeneous banks. Their

proofs are essentially unchanged, with y and ` replaced with yi and `i everywhere, except in

the last line of the proof of Lemma 9, when they are replaced by yi⇤ and `i⇤ . We apply these

results freely throughout the proof.

Now we prove the result in three steps.

Step 1: For all i such that �i = 0, xi = 1. This is immediate from equation (4), which

implies that the bank is not liquidated if it is not shocked.

Step 2: Existence of critical index. Now show that there exists a critical index i⇤ such

that a shocked bank Bi is liquidated if and only if i � i⇤. Suppose, in anticipation of

a contradiction, that, to the contrary, there are shocked Bi and Bj with i < j such

that xi = 0 and xj = 1. Then, by equation (4), it must be that Ri✓ < `i � ✓yi and

Rj✓ � `j � ✓yj and, therefore, by Lemma 8, that

`j � ✓yj  Rj✓ < sj�iRi✓ < sj�i(`i � ✓yi). (112)

The inequality is violated if s < j�i
p

(`j � ✓yj)/(`i � ✓yi), a contradiction.

52



Step 3: Same critical index. We now show that the critical index delivered by the exponen-

tial network coincides with that delivered by the greedy algorithm (for every state �)

or, equivalently, that i⇤ satisfies the following two inequalities:

i⇤X

i=1

�i(`i � ✓yi) >
NX

i=1

(1� �i)✓yi (113)

and
i⇤�1X

i=1

�i(`i � ✓yi) 
NX

i=1

(1� �i)✓yi. (114)

The second is immediate, as it is implied by the aggregate liquidity constraint, which

holds strictly by hypothesis. To prove the first, we invoke Lemma 7, which implies that,

as long as debts are su�ciently high, each not-shocked bank pays ✓yi in net payment,

so conservation of liquidity requires:

NX

i=1

(1� �i)✓yi = �
X

i :�i=0

(Ri✓ �Ri◆) (115)

=
X

i :�i=1

(Ri✓ �Ri◆) (116)

=
X

i2L c :�i=1

(Ri✓ �Ri◆) +
X

i2L

(Ri✓ �Ri◆) (117)


X

i2L c :�i=1

(Ri✓ �Ri◆) +
X

i2L

Ri✓ (118)

<
X

i2L c :�i=1

(Ri✓ �Ri◆) +
Ri⇤✓
1� s

(119)


X

i2L c :�i=1

(`i � ✓yi) +
`i⇤ � ✓yi⇤

1� s
(120)

=
i⇤X

i=1

�i(`i � ✓yi) +
s

1� s
(`i⇤ � ✓y⇤) (121)

having used Lemma 9 to bound the sum over liquidated banks. Letting s be su�ciently

small and recalling that the inequality must be strict by assumption gives the result.
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A.21 Proof of Corollary 2 (Optimality of exponential network

with common costs)

The result is immediate from the definitions of equivalence of the planner’s problem to the

knapsack problem and of the greedy algorithm to the exponential network; see Proposition

8, Definition 12, and Proposition 9. (See also the discussion following the statement of the

corollary.)

A.22 Proof of Corollary 3 (Approximate optimality of exponential

network with small banks)

The result follows immediately from the so-called Dantzig bound (Dantzig (1957)), which

we state as a lemma:

Lemma A.9. Suppose, w.l.o.g., that banks are ordered by their profitability indices (PIi �

PIj for i  j) and let x̌ be a solution of KP (Definition 12). We have that

NX

i=1

�ix̌i�i 
i⇤�1X

i=1

�i�i +�i⇤ . (122)

Proof. See Martello and Toth (1990), Theorem 2.1.

The result implies that the di↵erence between the objective at the optimum (represented by

the LHS of equation (122)) and at the greedy alogithm’s approximation of it (represented

by the sum on the RHS) is at most �i⇤ , as desired.

B Notations

To the extent possible, we use bold face letters for matrices and vectors and use italics for

scalars; we use single-arrow subscripts for liabilities from one bank to another and double-

arrow subscripts for total liabilities from one to many banks. E.g., F = [Fi!j]ij is the matrix
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of interbank liabilities between individual banks; F◆ = [Fi◆]i is the vector of banks’ total

interbank liabilities, i.e. the vector of row sums of F. We use Bi for individual banks and

script letters for sets; Bi 2 B and i 2 B are synonymous. We summarize our notations in

Table 2, separating those used in the main text from those used only in extensions or proofs.

Table 2: Notations.

Notation Meaning Parametric restriction

y Long-term real asset value y > 0

` Size of liquidity shock ✓y < ` < y

✓ Pledgeable fraction of y 0 < ✓ < 1

�i Indicator of Bi’s shock �i 2 {0, 1}

� ⌘ {�i}i Vector of shocks/Aggregate state � 2 {0, 1}N

Bi ith bank

B A set of banks

B
c Complement of B

L Set of banks that are liquidated L ⇢ D

N Number of banks

S =
P

�i Number of shocked banks

L = |L | Number of liquidated banks

L⇤ Minimum L (Lemma 6)

Fi!j Bi’s liability to Bj Fi!j � 0

F ⌘ [Fi!j ]ij Matrix of interbank debts

Fi◆ ⌘
P

j 6=i Fi!j Bi’s total interbank liabilities

F Each bank’s total liabilities F ⌘ Fi◆ in a regular network

Fi✓ ⌘
P

j 6=i Fj!i Bi’s total interbank claims

F◆ ⌘ {Fi◆}i Vector of each bank’s total interbank liabilities

F̂i!j ⌘ Fi!j/Fi◆ Bi’s liability to Bj as a fraction of its total liabilities 0  F̂i!j  1

F̂ ⌘ [F̂i!j ]ij Matrix of interbank debts
P

i F̂i!j = 1

Ri!j Bi’s equilibrium repayment to Bj 0  Ri!j  Fi!j

Ri◆ ⌘
P

j 6=i Ri!j Bi’s total repayment to other banks

Ri✓ ⌘
P

j 6=i Fj!i Bi’s total repayment received from other banks

Continued on next page
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Notations (continued)

Notation Meaning Parametric restriction

R◆ ⌘ {Ri◆}i Vector of each bank’s total equilibrium repayment 0  R◆  F◆

R✓ ⌘ {Ri✓}i Vector of each bank’s total payment received R✓ = F̂>R◆

↵ Scale of debts used in, e.g., Proposition 2 ↵ > 0

� Bottleneck parameter (Definition 6)

di!j Harmonic distance from Bi to Bj (Definition 5) di!j � 0

� Connectedness parameter (Definition 4) 0 < � < 1

dST , dLT Default and salvation radii in Lemma 4 and Proposition 4

�ST ,�ST ,�LT ,�LT Thresholds in Lemma 5 and Proposition 5

s Dominance parameter (Definition 9) 0 < s < 1

s⇤ Threshold in Proposition 6

ti Transfer to Bi in Definition 7

i⇤ Index of largest liquidated bank in Section 5 and Section 6.3

⇡i Permutation of banks keeping Bi fixed

[·]+ = max{·, 0} Maximum of variable and zero

d·e, b·c Ceiling and floor functions

Notations Used Only in Extensions

y⇤ E�cient liquidation threshold in Section 6.1

�i E�ciency loss if Bi is liquidated in Section 6.3

x ⌘ {xi}i Vector of indicators of banks not being liquidated in Section 6.3 x 2 {0, 1}N

t̂, ť, x̂, x̌ Optimizers in Section 6.3

⇡ Ranking of banks for greedy algorithm in Section 6.3

yi Bi’s long-term real asset value in Section 6.3 yi > 0

`i Size of Bi’s liquidity shock in Section 6.3 ✓yi < `i < yi

Notations Used Only in Proofs

Q A matrix, usually shorthand for F̂>

QB1,B2
⌘ [Qij ]i2B1,j2B2 Block matrix with rows in B1 and columns in B2

Q̃ Matrix in Lemma A.8

Continued on next page
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Notations (continued)

Notation Meaning Parametric restriction

0,1 Vectors of zeros and ones ((0, ..., 0) and (1, ..., 1))

di!B ⌘ {di!j}j2B Vector of Bi’s harmonic distance to banks in B

Di ⌘ Fi◆ �Ri◆ Bi’s shortfall

D ⌘ F◆ �R◆ Vector of each bank’s shortfall

D Set of banks that default

�↵, ↵ Mappings used in Lemma A.1 and Lemma A.6

H
↵,I ↵ Restricted domains of �↵ and  ↵

QN
i=1 Xi = X1 ⇥ · · ·⇥XN Cartesian product of sets X1, ..., XN
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