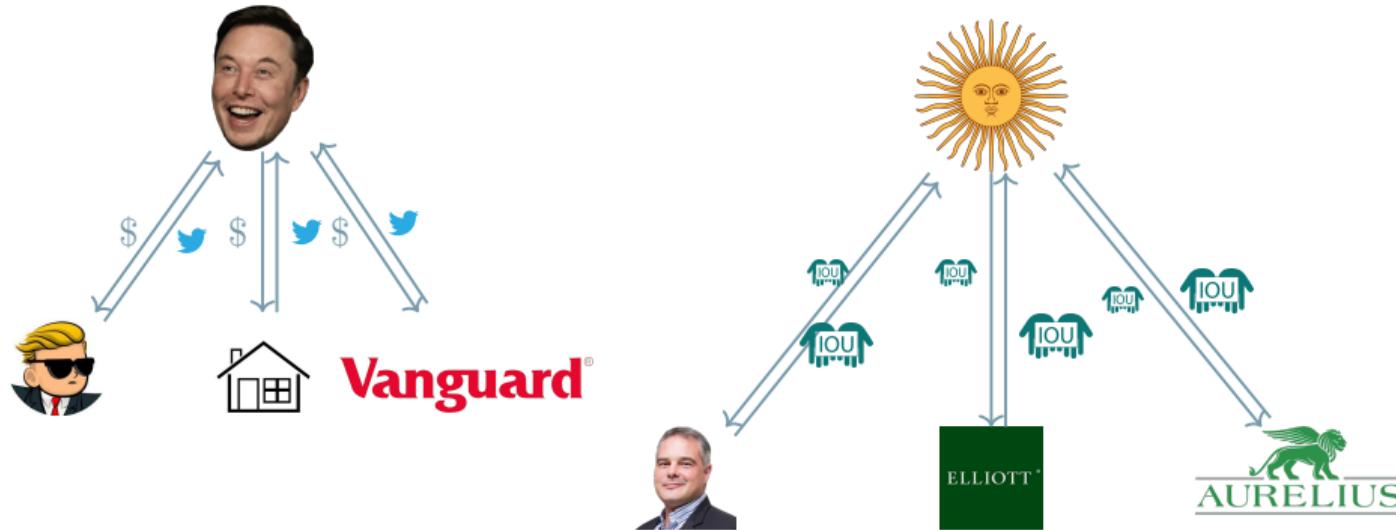

A Theory of Holdouts

Xiaobo Yu
CU Boulder

Exchange Offers and Holdout Problems



The Puzzle

The holdout problem is surprising as it has an "easy" solution:

Contingent proposal requiring unanimity makes all agents pivotal

Almost never used in practice

Instead, what we see systematically different solutions

Corporate debt restructuring: Senior debt

Takeovers: Cash and stock offers (except for freeze-outs)

Why? Limited commitment!

The Puzzle

The holdout problem is surprising as it has an "easy" solution:

Contingent proposal requiring unanimity makes all agents pivotal

Almost never used in practice

Instead, what we see systematically different solutions

Corporate debt restructuring: Senior debt

Takeovers: Cash and stock offers (except for freeze-outs)

Why? Limited commitment!

The Puzzle

The holdout problem is surprising as it has an "easy" solution:

Contingent proposal requiring unanimity makes all agents pivotal

Almost never used in practice

Instead, what we see systematically different solutions

Corporate debt restructuring: Senior debt

Takeovers: Cash and stock offers (except for freeze-outs)

Why? Limited commitment!

This Paper

Provides a unified framework for holdout problems

Two types of players:

Agents endowed with outstanding securities

Principal, the residual claimant, offers new securities for old

Two frictions:

Collective action problem among agents

Limited commitment (L.C.) of the principal

Results Preview

Full Commitment Benchmarks:

B1: Same new securities used in equilibrium independent of existing securities

B2: No role for policy intervention: Efficient outcome attained

Limited Commitment (L.C.) Results:

R1: Different new securities, depending on initial securities's payoff sensitivity

Key: Payoff sensitivity determines credibility of punishment

R2: Role of policy intervention: Increasing commitment can backfire

Key: You compete with your future self and commitment helps both

Results Preview

Full Commitment Benchmarks:

- B1: Same new securities used in equilibrium independent of existing securities
- B2: No role for policy intervention: Efficient outcome attained

Limited Commitment (L.C.) Results:

- R1: Different new securities, depending on initial securities's payoff sensitivity
 - Key: Payoff sensitivity determines credibility of punishment
- R2: Role of policy intervention: Increasing commitment can backfire
 - Key: You compete with your future self and commitment helps both

Results Preview

Full Commitment Benchmarks:

- B1: Same new securities used in equilibrium independent of existing securities
- B2: No role for policy intervention: Efficient outcome attained

Limited Commitment (L.C.) Results:

- R1: Different new securities, depending on initial securities's payoff sensitivity
 - Key: Payoff sensitivity determines credibility of punishment
- R2: Role of policy intervention: Increasing commitment can backfire
 - Key: You compete with your future self and commitment helps both

New Mechanism from Generalization along 2 Dimensions

	Full Commitment	Limited Commitment
Specific Security	Classic Papers e.g., Grossman–Hart 80 (Cash)	No Optimal Contracting Pitchford–Wright 12 (Cash)
General Securities	No Holdout Problems e.g., Segal 99	My Focus

New Mechanism from Generalization along 2 Dimensions

	Full Commitment	Limited Commitment
Specific Security	Classic Papers e.g., Grossman–Hart 80 (Cash)	No Optimal Contracting Pitchford–Wright 12 (Cash)
General Securities	No Holdout Problems e.g., Segal 99	My Focus

New Mechanism from Generalization along 2 Dimensions

	Full Commitment	Limited Commitment
Specific Security	Classic Papers e.g., Grossman–Hart 80 (Cash)	No Optimal Contracting Pitchford–Wright 12 (Cash)
General Securities	No Holdout Problems e.g., Segal 99	My Focus

New Mechanism from Generalization along 2 Dimensions

	Full Commitment	Limited Commitment
Specific Security	Classic Papers e.g., Grossman–Hart 80 (Cash)	No Optimal Contracting Pitchford–Wright 12 (Cash)
General Securities	No Holdout Problems e.g., Segal 99	My Focus

Model

Setup

Players: N agents (A_i) and a principal (P)

Timing:

1. P offers new securities R_i in exchange for Old ones R_i^O (Claims on asset)
2. Each A_i *independently* chooses to accept ($h_i = 0$) or hold out ($h_i = 1$)
3. Given $h = (h_1, \dots, h_N)$, P chooses to honor at cost c or renegotiate
 - If honored, asset value $v(h)$ realized; Everyone paid according to securities
 - Else, repeat if P not committed

NB: Static when $R = (R_1, \dots, R_N)$ renegot.-proof

Setup

Players: N agents (A_i) and a principal (P)

Timing:

1. P offers new securities R_i in exchange for Old ones R_i^O (Claims on asset)
2. Each A_i independently chooses to accept ($h_i = 0$) or hold out ($h_i = 1$)
3. Given $h = (h_1, \dots, h_N)$, P chooses to honor at cost c or renegotiate
 - If honored, asset value $v(h)$ realized; Everyone paid according to securities
 - Else, repeat if P not committed

NB: Static when $R = (R_1, \dots, R_N)$ renegotiation-proof

Setup

Players: N agents (A_i) and a principal (P)

Timing:

1. P offers new securities R_i in exchange for Old ones R_i^O (Claims on asset)
2. Each A_i *independently* chooses to accept ($h_i = 0$) or hold out ($h_i = 1$)
3. Given $h = (h_1, \dots, h_N)$, P chooses to honor at cost c or renegotiate
 - If honored, asset value $v(h)$ realized; Everyone paid according to securities
 - Else, repeat if P not committed

NB: Static when $R = (R_1, \dots, R_N)$ renegot.-proof

Setup

Players: N agents (A_i) and a principal (P)

Timing:

1. P offers new securities R_i in exchange for Old ones R_i^O (Claims on asset)
2. Each A_i *independently* chooses to accept ($h_i = 0$) or hold out ($h_i = 1$)
3. Given $\mathbf{h} = (h_1, \dots, h_N)$, P chooses to honor at cost c or renegotiate
If honored, asset value $v(\mathbf{h})$ realized; Everyone paid according to securities
Else, repeat if P not committed

NB: Static when $\mathbf{R} = (R_1, \dots, R_N)$ renegot.-proof

Setup

Players: N agents (A_i) and a principal (P)

Timing:

1. P offers new securities R_i in exchange for Old ones R_i^O (Claims on asset)
2. Each A_i *independently* chooses to accept ($h_i = 0$) or hold out ($h_i = 1$)
3. Given $\mathbf{h} = (h_1, \dots, h_N)$, P chooses to honor at cost c or renegotiate
 - If honored, asset value $v(\mathbf{h})$ realized; Everyone paid according to securities
 - Else, repeat if P not committed

NB: Static when $\mathbf{R} = (R_1, \dots, R_N)$ renegot.-proof

What do we mean by “securities”

Payoffs: Specific Securities

Suppose no new securities and all holdouts get $w \leq v$ collectively

Equity $\alpha = (\alpha_1, \dots, \alpha_N)$: A_i gets paid $\alpha_i w$

Debt $D = (D_1, \dots, D_N)$

w/o seniority: A_i gets paid $\min \left\{ D_i, \frac{(1-h_i)D_i}{(1-h) \cdot D} w \right\}$

w/ seniority: A_i gets paid $\min \left\{ D_i, w - \sum_{j \text{ senior to } i} (1 - h_j) D_j \right\}$

But how to model general contracts that can be arbitrary?

Payoffs: Specific Securities

Suppose no new securities and all holdouts get $w \leq v$ collectively

Equity $\alpha = (\alpha_1, \dots, \alpha_N)$: A_i gets paid $\alpha_i w$

Debt $D = (D_1, \dots, D_N)$

w/o seniority: A_i gets paid $\min \left\{ D_i, \frac{(1-h_i) D_i}{(1-h) \cdot D} w \right\}$

w/ seniority: A_i gets paid $\min \left\{ D_i, w - \sum_{j \text{ senior to } i} (1 - h_j) D_j \right\}$

But how to model general contracts that can be arbitrary?

Payoffs: Specific Securities

Suppose no new securities and all holdouts get $w \leq v$ collectively

Equity $\alpha = (\alpha_1, \dots, \alpha_N)$: A_i gets paid $\alpha_i w$

Debt $D = (D_1, \dots, D_N)$

w/o seniority: A_i gets paid $\min \left\{ D_i, \frac{(1-h_i) D_i}{(1-h) \cdot D} w \right\}$

w/ seniority: A_i gets paid $\min \left\{ D_i, w - \sum_{j \text{ senior to } i} (1 - h_j) D_j \right\}$

But how to model general contracts that can be arbitrary?

Payoffs: Specific Securities

Suppose no new securities and all holdouts get $w \leq v$ collectively

Equity $\alpha = (\alpha_1, \dots, \alpha_N)$: A_i gets paid $\alpha_i w$

Debt $D = (D_1, \dots, D_N)$

w/o seniority: A_i gets paid $\min \left\{ D_i, \frac{(1-h_i) D_i}{(1-h) \cdot D} w \right\}$

w/ seniority: A_i gets paid $\min \left\{ D_i, w - \sum_{j \text{ senior to } i} (1 - h_j) D_j \right\}$

But how to model general contracts that can be arbitrary?

Payoffs: General Securities

Securities are *vector functions* mapping asset value & agents' securities to payoffs

$$\mathbf{R}(v, \mathbf{h}) \mapsto \mathbb{R}^N \quad \text{New securities}$$

$$\mathbf{R}^O(v, \mathbf{h}|\mathbf{R}) \mapsto \mathbb{R}^N \quad \text{Original securities}$$

A_i 's payoff:

$$u_i := h_i R_i^O + (1 - h_i) R_i$$

P's gross payoff:

$$J(\mathbf{h}|\mathbf{R}) := v(\mathbf{h}) - \left[\mathbf{h} \cdot \mathbf{R}^O + (1 - \mathbf{h}) \cdot \mathbf{R} \right]$$

Payoffs: General Securities

Securities are *vector functions* mapping asset value & agents' securities to payoffs

$$\mathbf{R}(v, \mathbf{h}) \mapsto \mathbb{R}^N \quad \text{New securities}$$

$$R^O(v, \mathbf{h}|\mathbf{R}) \mapsto \mathbb{R}^N \quad \text{Original securities}$$

A_i 's payoff:

$$u_i := h_i R_i^O + (1 - h_i) R_i$$

P's gross payoff:

$$J(\mathbf{h}|\mathbf{R}) := v(\mathbf{h}) - [\mathbf{h} \cdot \mathbf{R}^O + (1 - \mathbf{h}) \cdot \mathbf{R}]$$

Model: Weak Consistency

Weak consistency (cf. Aumann–Maschler 85, Moulin 00)

$$R_i^O(v, \mathbf{h} | \mathbf{R}) = R_i^O\left(v - \underbrace{(\mathbf{1} - \mathbf{h}) \cdot \mathbf{R}}_{=:x \text{ ("dilution")}}, \mathbf{h}\right)$$

↓
Eqm. asset value $v(\mathbf{h})$

↑
Holdout profile

NB: Could reverse R and R^O but size of “dilution” needs to be determined by R

Model: Weak Consistency

Weak consistency (cf. Aumann–Maschler 85, Moulin 00)

$$R_i^O(v, \mathbf{h} | \mathbf{R}) = R_i^O\left(v - \underbrace{(\mathbf{1} - \mathbf{h}) \cdot \mathbf{R}}_{=:x \text{ ("dilution")}}, \mathbf{h}\right)$$

↓
Eqm. asset value $v(\mathbf{h})$

↑
Holdout profile

NB: Could reverse R and R^O but size of “dilution” needs to be determined by R

Weak Consistency: Examples

I owe senior debt to S, junior debt to J, and offer new security to T(endering) agents

Allowed by Weak Consistency

Offering T a payoff senior (or junior) to both J and S

Offering T a payoff senior to J and junior to S

Ruled out by Weak Consistency

Offering T a payoff junior to J and senior to S

Offering P herself a claim senior to both J and S

P cannot selectively dilute \implies cannot punish holdouts without punishing herself

Weak Consistency: Examples

I owe senior debt to S, junior debt to J, and offer new security to T(endering) agents

Allowed by Weak Consistency

Offering T a payoff senior (or junior) to both J and S

Offering T a payoff senior to J and junior to S

Ruled out by Weak Consistency

Offering T a payoff junior to J and senior to S

Offering P herself a claim senior to both J and S

P cannot selectively dilute \implies cannot punish holdouts without punishing herself

Weak Consistency: Examples

I owe senior debt to S, junior debt to J, and offer new security to T(endering) agents

Allowed by Weak Consistency

Offering T a payoff senior (or junior) to both J and S

Offering T a payoff senior to J and junior to S

Ruled out by Weak Consistency

Offering T a payoff junior to J and senior to S

Offering P herself a claim senior to both J and S

P cannot selectively dilute \implies cannot punish holdouts without punishing herself

Weak Consistency: Examples

I owe senior debt to S, junior debt to J, and offer new security to T(endering) agents

Allowed by Weak Consistency

Offering T a payoff senior (or junior) to both J and S

Offering T a payoff senior to J and junior to S

Ruled out by Weak Consistency

Offering T a payoff junior to J and senior to S

Offering P herself a claim senior to both J and S

P cannot selectively dilute \implies cannot punish holdouts without punishing herself

Model: Payoff Sensitivity

Def: How payoff $R_i^O(w, \mathbf{h})$ varies with diluted value $w := v - (\mathbf{1} - \mathbf{h}) \cdot \mathbf{R}$

Equity: A_i has an equity stake $\alpha_i \in (0, 1)$, then

$$R_i^O(w, \mathbf{h}) = \alpha_i w \quad \implies \quad \frac{\partial R_i^O(w, \mathbf{h})}{\partial w} = \alpha_i < 1$$

Debt: A_i has debt with face value D_i then

$$R_i^O(w, \mathbf{h}) = \min \{D_i, w\} \quad \stackrel{\text{in default}}{\implies} \quad \frac{\partial R_i^O(w, \mathbf{h})}{\partial w} = 1$$

Principal: The residual claimant

$$J(\mathbf{h}|\mathbf{R}) = w - \mathbf{h} \cdot \mathbf{R}^O \quad \implies \quad \frac{\partial J(\mathbf{h}|\mathbf{R})}{\partial w} = 1 - \sum_{i=1}^N \frac{\partial R_i^O(w, \mathbf{h})}{\partial w} h_i$$

Model: Payoff Sensitivity

Def: How payoff $R_i^O(w, \mathbf{h})$ varies with diluted value $w := v - (\mathbf{1} - \mathbf{h}) \cdot \mathbf{R}$

Equity: A_i has an equity stake $\alpha_i \in (0, 1)$, then

$$R_i^O(w, \mathbf{h}) = \alpha_i w \quad \implies \quad \frac{\partial R_i^O(w, \mathbf{h})}{\partial w} = \alpha_i < 1$$

Debt: A_i has debt with face value D_i then

$$R_i^O(w, \mathbf{h}) = \min \{D_i, w\} \quad \stackrel{\text{in default}}{\implies} \quad \frac{\partial R_i^O(w, \mathbf{h})}{\partial w} = 1$$

Principal: The residual claimant

$$J(\mathbf{h}|\mathbf{R}) = w - \mathbf{h} \cdot \mathbf{R}^O \quad \implies \quad \frac{\partial J(\mathbf{h}|\mathbf{R})}{\partial w} = 1 - \sum_{i=1}^N \frac{\partial R_i^O(w, \mathbf{h})}{\partial w} h_i$$

Model: Payoff Sensitivity

Def: How payoff $R_i^O(w, \mathbf{h})$ varies with diluted value $w := v - (\mathbf{1} - \mathbf{h}) \cdot \mathbf{R}$

Equity: A_i has an equity stake $\alpha_i \in (0, 1)$, then

$$R_i^O(w, \mathbf{h}) = \alpha_i w \quad \implies \quad \frac{\partial R_i^O(w, \mathbf{h})}{\partial w} = \alpha_i < 1$$

Debt: A_i has debt with face value D_i then

$$R_i^O(w, \mathbf{h}) = \min \{D_i, w\} \quad \stackrel{\text{in default}}{\implies} \quad \frac{\partial R_i^O(w, \mathbf{h})}{\partial w} = 1$$

Principal: The residual claimant

$$J(\mathbf{h}|\mathbf{R}) = w - \mathbf{h} \cdot \mathbf{R}^O \quad \implies \quad \frac{\partial J(\mathbf{h}|\mathbf{R})}{\partial w} = 1 - \sum_{i=1}^N \frac{\partial R_i^O(w, \mathbf{h})}{\partial w} h_i$$

Assumptions

A1 (Inefficient Holdouts): Weakly lower value when more agents hold out

$v(h)$ is weakly decreasing in h

A2 (Payoff Regularity): Existing securities have “reasonable” payoffs

$w \mapsto h \cdot R^O(w, h)$ is increasing and 1-Lipschitz $\forall h$

A3 (Moderate Cost): Cost neither too large nor too small

$v(\mathbf{0}) > c > v(\mathbf{0}) - \sum_{i=1}^N R_i^O(v(e_i), e_i)$ where $h = e_i$ is profile when only A_i holds out

NB: Toeholding ruled out by A3

Solution Concepts

Think of the Strategy

“First gets everything, Last gets nothing”

May not want to give everything to the first

May not be feasible to give nothing to the last

May not want to give nothing to the last, *even if it's feasible*: it might hurt you

Now we formalize them

Principal's Problem

P chooses R to maximize value $J(\mathbf{0})$ at $h = \mathbf{0}$

$$\max_R v(\mathbf{0}) - \underbrace{\sum_{i=1}^N R_i(v(\mathbf{0}), \mathbf{0})}_{J(\mathbf{0}|R)}$$

such that

A_i incentive compatible to accept at $\mathbf{0}$

P unwilling to renegotiate upon deviation (only with L.C.)

Incentive Compatibility for Agents at h

R is incentive compatible at h ($R \in \mathcal{I}(h)$) if

$$u_i(h_i|h_{-i}, R) \geq u_i(h'_i|h_{-i}, R) \quad \forall h'_i \forall i \quad (\text{IC})$$

NB: RHS under R as no renegotiation on-path

Incentive Compatibility for Agents at 0

R is incentive compatible at $\mathbf{0}$ ($R \in \mathcal{I}(\mathbf{0})$) if

$$R_i(v(\mathbf{0}), \mathbf{0}) \geq R_i^O \left(v(e_i) - \sum_{j \neq i} R_j(v(e_i), e_i), e_i \right) \quad (\text{IC})$$

P could pay A_i a lot at $\mathbf{0} \implies$ costly

dilute A_i 's value at e_i ... by paying others a lot \implies costly *off-path*

Incentive Compatibility for Agents at 0

R is incentive compatible at $\mathbf{0}$ ($R \in \mathcal{I}(\mathbf{0})$) if

$$R_i(v(\mathbf{0}), \mathbf{0}) \geq R_i^O \left(v(e_i) - \sum_{j \neq i} R_j(v(e_i), e_i), e_i \right) \quad (\text{IC})$$

P could **pay A_i a lot at 0** \implies costly

dilute A_i 's value at e_i ... by paying others a lot \implies costly *off-path*

Incentive Compatibility for Agents at 0

R is incentive compatible at $\mathbf{0}$ ($R \in \mathcal{I}(\mathbf{0})$) if

$$R_i(v(\mathbf{0}), \mathbf{0}) \geq R_i^O \left(v(e_i) - \sum_{j \neq i} R_j(v(e_i), e_i), e_i \right) \quad (\text{IC})$$

P could pay A_i a lot at $\mathbf{0} \implies$ costly

dilute A_i 's value at e_i ... by paying others a lot \implies costly *off-path*

Incentive Compatibility for Agents at 0

R is incentive compatible at $\mathbf{0}$ ($R \in \mathcal{I}(\mathbf{0})$) if

$$R_i(v(\mathbf{0}), \mathbf{0}) \geq R_i^O \left(v(e_i) - \sum_{j \neq i} R_j(v(e_i), e_i), e_i \right) \quad (\text{IC})$$

P could pay A_i a lot at $\mathbf{0} \implies$ costly

dilute A_i 's value at e_i ... by paying others a lot \implies costly *off-path*

Incentive Compatibility for Agents at 0

R is incentive compatible at $\mathbf{0}$ ($R \in \mathcal{I}(\mathbf{0})$) if

$$R_i(v(\mathbf{0}), \mathbf{0}) \geq R_i^O \left(v(e_i) - \sum_{j \neq i} R_j(v(e_i), e_i), e_i \right) \quad (\text{IC})$$

P could pay A_i a lot at $\mathbf{0} \implies$ costly

dilute A_i 's value at e_i ... by paying others a lot \implies costly *off-path*

Incentive Compatibility for Agents at 0

R is incentive compatible at $\mathbf{0}$ ($R \in \mathcal{I}(\mathbf{0})$) if

$$R_i(v(\mathbf{0}), \mathbf{0}) \geq R_i^O \left(v(e_i) - \sum_{j \neq i} R_j(v(e_i), e_i), e_i \right) \quad (\text{IC})$$

P could pay A_i a lot at $\mathbf{0} \implies$ costly

dilute A_i 's value at e_i ... by paying others a lot \implies costly *off-path*

What are feasible actions in
renegotiation if agents deviate?

Credibility for Principal w. Limited Commitment

Exchange offer R is credible at h if (cf. Pearce 87, Farrel–Maskin 89, Ray 94)

R is IC at h for all agents

At deviation profile \hat{h} , P unwilling to renegotiate to any offer \tilde{R} credible at \hat{h}

when renegotiated payoff is discounted by $\delta \in [0, 1]$ (cf. DeMarzo–Fishman 07)

Formally

$$\mathcal{C}(h) = \left\{ R \in \mathcal{I}(h) : J(\hat{h}|R) \geq \delta J(\hat{h}|\tilde{R}) \quad \forall \tilde{R} \in \mathcal{C}(\hat{h}) \quad \forall \hat{h} : \|\hat{h} - h\| = 1 \right\}$$

Thm1: $\mathcal{C}(\cdot)$ exists and is unique for any $\delta \in [0, 1]$ Existence

Credibility for Principal w. Limited Commitment

Exchange offer R is δ -credible at h if (cf. Pearce 87, Farrel–Maskin 89, Ray 94)

R is IC at h for all agents

At deviation profile \hat{h} , P unwilling to renegotiate to any offer \tilde{R} δ -credible at \hat{h}

when renegotiated payoff is discounted by $\delta \in [0, 1]$ (cf. DeMarzo–Fishman 07)

Formally

$$\mathcal{C}(h) = \left\{ R \in \mathcal{I}(h) : J(\hat{h}|R) \geq \delta J(\hat{h}|\tilde{R}) \quad \forall \tilde{R} \in \mathcal{C}(\hat{h}) \quad \forall \hat{h} : \|\hat{h} - h\| = 1 \right\}$$

Thm1: $\mathcal{C}(\cdot)$ exists and is unique for any $\delta \in [0, 1]$ Existence

Credibility for Principal w. Limited Commitment

Exchange offer \mathbf{R} is δ -credible at \mathbf{h} if (cf. Pearce 87, Farrel–Maskin 89, Ray 94)

\mathbf{R} is IC at \mathbf{h} for all agents

At deviation profile $\hat{\mathbf{h}}$, P unwilling to renegotiate to any offer $\tilde{\mathbf{R}}$ δ -credible at $\hat{\mathbf{h}}$

when renegotiated payoff is discounted by $\delta \in [0, 1]$ (cf. DeMarzo–Fishman 07)

Formally

$$\mathcal{C}(\mathbf{h}) = \left\{ \mathbf{R} \in \mathcal{I}(h) : J(\hat{\mathbf{h}}|\mathbf{R}) \geq \delta J(\hat{\mathbf{h}}|\tilde{\mathbf{R}}) \quad \forall \tilde{\mathbf{R}} \in \mathcal{C}(\hat{\mathbf{h}}) \quad \forall \hat{\mathbf{h}} : \|\hat{\mathbf{h}} - \mathbf{h}\| = 1 \right\}$$

Thm1: $\mathcal{C}(\cdot)$ exists and is unique for any $\delta \in [0, 1]$ Existence

Caveats in Definition

It seems as if if A_i holds out, P does not try to win him back in the off-path offer

If P wins A_i back, he could have offered it in the first place

Only the continuation eqm. where A_i holds out determines his outside option

Different from Rubinstein: No counteroffers ($\not\Rightarrow$ P full bargaining power)

Same as Rubinstein: No belief updating

Caveats in Definition

It seems as if if A_i holds out, P does not try to win him back in the off-path offer

If P wins A_i back, he could have offered it in the first place

Only the continuation eqm. where A_i holds out determines his outside option

Different from Rubinstein: No counteroffers ($\not\Rightarrow$ P full bargaining power)

Same as Rubinstein: No belief updating

Other Renegotiation Protocols

If P can renegotiate out of inefficiency

Theoretically, agreement may never be achieved (Anderlini–Felli 01)

Empirically, it might be illegal to bribe a holdout (17 CFR §240.14d-10)

Relaxing this restores first best

If agents can hold P accountable, blocking renegotiation

Relaxing this leads to the full-commitment case

Benchmarks: Full Commitment

Efficiency (First Best)

Efficiency achieved if everyone tenders $h = 0$

Follows from A1 : $v(h)$ decreasing in h

How Different Elements Add Up

Coordinated Agents: FB achieved by Coase Thm. (No holdout problems)

↓
+ collective action problem

Dispersed Agents: FB not achieved with cash (Classic holdout problems)

↓
+ flexible contractual space

Benchmarks

↓
+ limited commitment

Main Results

Full Commitment: Holdout Problems w. Cash

B0: There is no R non-contingent that implements $h = \mathbf{0}$ (only result requiring A3)

Intuition: A_i benefits from the deal when others participate

Impact on deal not fully internalized and costly for P to compensate

Incentive to free-ride impedes value enhancement

Essential force underlines Grossman–Hart, Bulow–Rogoff, etc

Full Commitment: Holdout Problems w. Cash

B0: There is no R non-contingent that implements $h = \mathbf{0}$ (only result requiring A3)

Intuition: A_i benefits from the deal when others participate

Impact on deal not fully internalized and costly for P to compensate

Incentive to free-ride impedes value enhancement

Essential force underlines Grossman–Hart, Bulow–Rogoff, etc

Full Commitment: One Solution to All

B1: No heterogeneity in the exchange offers

Proof with $v(\mathbf{1})$ normalized to 0:

P implements $\mathbf{h} = \mathbf{0}$ by offering small $R_i > 0$ only if all agents agree

$$u_i = \begin{cases} 0 & \text{if } h_i = 1 \\ R_i > 0 & \text{if } h_j = 0 \forall j \end{cases} \implies h_i = 0 \text{ weakly dominates } h_i = 1$$

Intuition: With unanimity, every agent pivotal, and thus no incentive to free ride

B2: Efficiency achieved: No role for policy intervention

Full Commitment: One Solution to All

B1: No heterogeneity in the exchange offers

Proof with $v(\mathbf{1})$ normalized to 0:

P implements $\mathbf{h} = \mathbf{0}$ by offering small $R_i > 0$ only if all agents agree

$$u_i = \begin{cases} 0 & \text{if } h_i = 1 \\ R_i > 0 & \text{if } h_j = 0 \forall j \end{cases} \implies h_i = 0 \text{ weakly dominates } h_i = 1$$

Intuition: With unanimity, every agent pivotal, and thus no incentive to free ride

B2: Efficiency achieved: No role for policy intervention

Limited Commitment Results

R0: Lack of Commitment Undermines Restructuring

R0: Unanimity Fails with Limited Commitment

Result: Unanimity doesn't implement $h = \mathbf{0}$ when P has L.C.

Unanimity gives P nothing when agents deviate

P not willing to execute threat ex post, carrying out the deal

Anticipating this, everyone holds out

No value enhancement to start with

NB: Seeing off-eqm non-credible offers, per subgame perfection,

A_i correctly “believes” P will offer credible ones when he deviates

R0: Unanimity Fails with Limited Commitment

Result: Unanimity doesn't implement $h = \mathbf{0}$ when P has L.C.

Unanimity gives P nothing when agents deviate

P not willing to execute threat ex post, carrying out the deal

Anticipating this, everyone holds out

No value enhancement to start with

NB: Seeing off-eqm non-credible offers, per subgame perfection,

A_i correctly “believes” P will offer credible ones when he deviates

Takeaways

T0: Holdout problems appear to be coordination failures (Sturzenegger-Zettelmeyer 07)

... but are essentially commitment problems

T1: Securities with higher priority are attractive to dilute

... and thus more vulnerable to dilution

T2: Ability to punish holdouts tomorrow

... limits ability to punish holdouts today

T3: When picking a fight among agents

... one man's protection is another man's punishment

R1: Optimal Contracts Depends on Holdout's Payoff Sensitivity

Limited Commitment: Principal's Problem

P chooses R to maximize value $J(\mathbf{0})$ at $h = \mathbf{0}$

$$\max_R J(\mathbf{0}|R)$$

subject to

$$R \in \mathcal{I}(\mathbf{0}) \tag{IC}$$

P unwilling to renegotiate upon deviation ($R \in \mathcal{C}(\mathbf{0})$) (RP)

R1: Optimal Contracts \iff Holdout's Payoff Sensitivity

Result: No contracts dominate cash when punishment hurts P & renegotiation costless

Arbitrary initial securities: payoff sensitivity serves as sufficient stat

Dilution credible for debt holdout \implies Senior debt effective

Dilution not credible for equity holdout \implies Cash optimal

R1: Optimal Contracts \iff Holdout's Payoff Sensitivity

Result: No contracts dominate cash when punishment hurts P & renegotiation costless

Arbitrary initial securities: payoff sensitivity serves as sufficient stat

Dilution credible for debt holdout \implies Senior debt effective

Dilution not credible for equity holdout \implies Cash optimal

R1 Proof: Senior Debt Credible in Debt Restructuring

Debt restructuring: Senior debt offering credible

Senior debt dilutes the claim of the holdout in default by

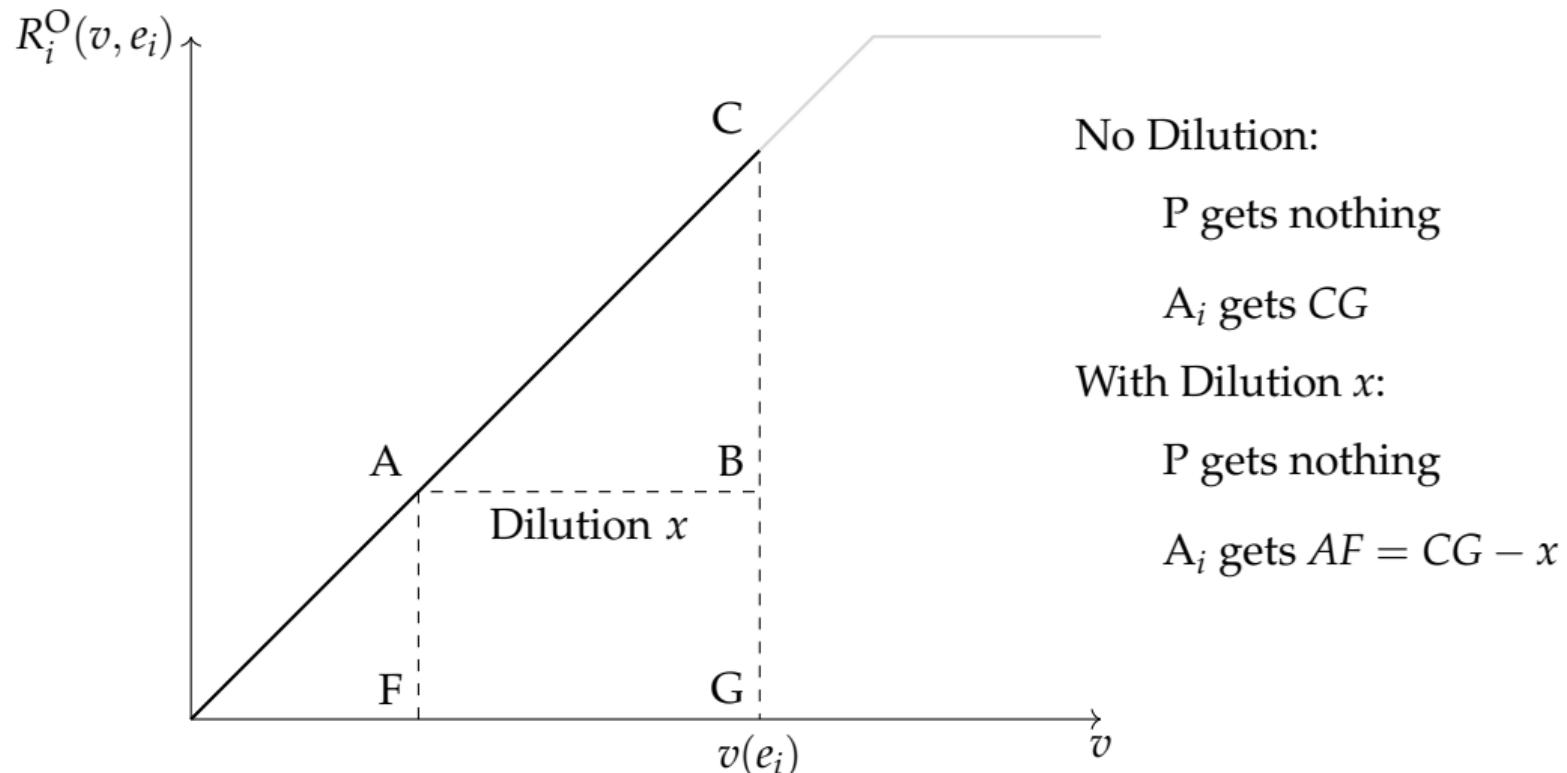
$$\frac{\partial R_i^O(w, \mathbf{h})}{\partial w} = 1$$

And that of the principal by

$$\frac{\partial J(\mathbf{h}|\mathbf{R})}{\partial w} = 1 - \frac{\partial R_i^O(w, \mathbf{h})}{\partial w} = 0$$

Diluting the holdout does not change the P's payoff \Rightarrow (RP) met

Graphic Representation: Credible dilution w. Debt



R1 Proof: Offering Priority Not Credible in Takeovers

Takeovers: Offering priority not credible

Priority dilutes the equity stake of the holdout by

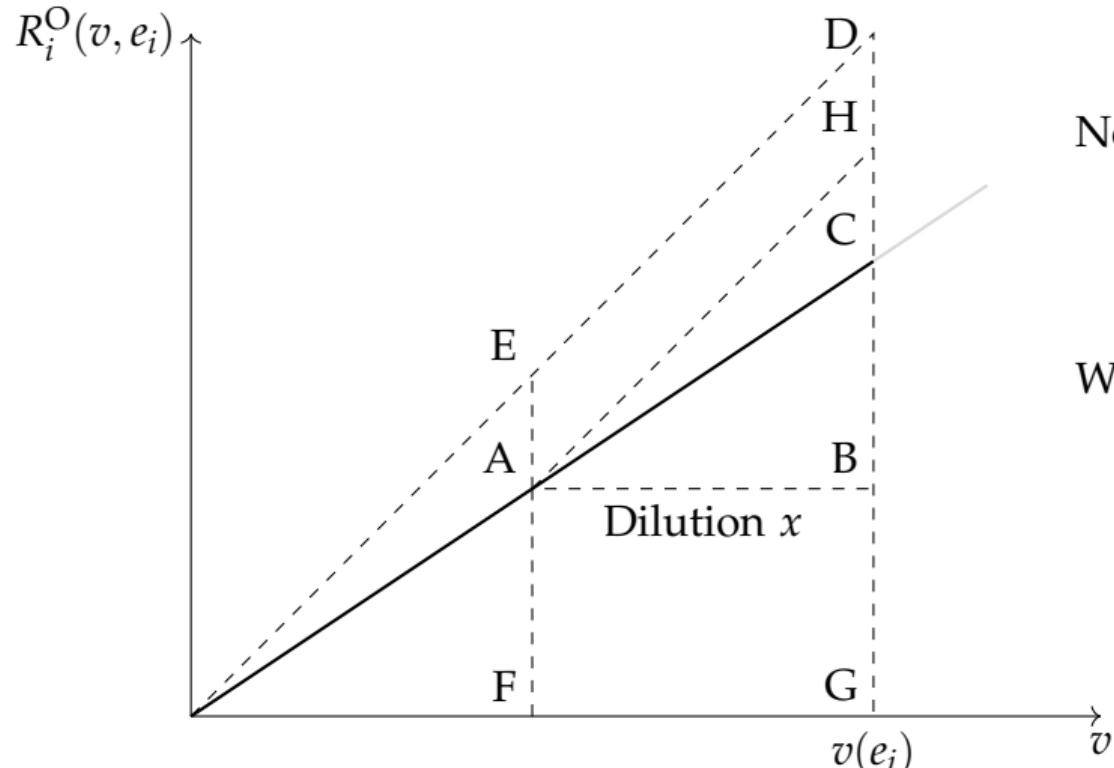
$$\frac{\partial R_i^O(w, \mathbf{h})}{\partial w} = \alpha_i < 1$$

And that of the principal by

$$\frac{\partial J(\mathbf{h}|\mathbf{R})}{\partial w} = 1 - \frac{\partial R_i^O(w, \mathbf{h})}{\partial w} = 1 - \alpha_i > 0$$

Diluting the holdout means diluting the principal \Rightarrow (RP) violated

Graphic Representation: Non-credible dilution w. Equity



No Dilution:

P gets *CD*

A_i gets CG

With Dilution x :

P gets $EA = DH < CD$

A_i gets $AF > CG - x$

Takeaways

T0: Holdout problems appear to be coordination failures (Sturzenegger-Zettelmeyer 07)

... but are essentially commitment problems

T1: Securities with higher priority are attractive to dilute

... and thus more vulnerable to dilution

T2: Ability to punish holdouts tomorrow

... limits ability to punish holdouts today

T3: When picking a fight among agents

... one man's protection is another man's punishment

Debt “Optimality”

Debt contracts are

most sensitive in distress so that credible dilution facilitates restructuring

least sensitive in normal times so that no excessive dilution

R2: Higher Commitment Could Backfire

Problem Reduction

A contract R is a $(2^N + 1)$ dimensional object! Hard to characterize!

P's continuation payoff at h only depends eqm. punishment $x(h)$

Fully characterized by dynamics of

min punishment $\underline{x}(h)$ so that (IC) met

max punishment $\bar{x}(h)$ so that (RP) met

Commitment δ only affects P through credibility constraint (i.e., through $x(h)$)

NB: Interval structure guaranteed by A2

Problem Reduction

A contract R is a $(2^N + 1)$ dimensional object! Hard to characterize!

P's continuation payoff at h only depends eqm. punishment $x(h)$

Fully characterized by dynamics of

min punishment $\underline{x}(h)$ so that (IC) met

max punishment $\bar{x}(h)$ so that (RP) met

Commitment δ only affects P through credibility constraint (i.e., through $x(h)$)

NB: Interval structure guaranteed by A2

Problem Reduction

A contract R is a $(2^N + 1)$ dimensional object! Hard to characterize!

P's continuation payoff at h only depends eqm. punishment $x(h)$

Fully characterized by dynamics of

min punishment $\underline{x}(h)$ so that (IC) met

max punishment $\bar{x}(h)$ so that (RP) met

Commitment δ only affects P through credibility constraint (i.e., through $x(h)$)

NB: Interval structure guaranteed by A2

Limited Commitment: Original Problem

How does δ (commitment) affect the principal's value $J(\mathbf{0})$

Recall that P's value at \mathbf{h} is

$$\max_{\mathbf{R}} J(\mathbf{h}|\mathbf{R}) \equiv v(\mathbf{h}) - [\mathbf{h} \cdot \mathbf{R}^O + (\mathbf{1} - \mathbf{h}) \cdot \mathbf{R}]$$

subject to IC

$$\mathbf{R} \in \mathcal{I}(\mathbf{h})$$

and RP

$$J(\mathbf{h} + e_i|\mathbf{R}) \geq \delta J(\mathbf{h} + e_i|\tilde{\mathbf{R}}) \quad \forall \tilde{\mathbf{R}} \in \mathcal{C}(\mathbf{h} + e_i) \quad \text{for all } i \in \xi(\mathbf{h}) := \{i : h_i = 0\}$$

Difficult! A contract \mathbf{R} is a $(2^N + 1)$ dimensional object

Limited Commitment: Original Problem

How does δ (commitment) affect the principal's value $J(\mathbf{0})$

Recall that P's value at \mathbf{h} is

$$\max_{\mathbf{R}} J(\mathbf{h}|\mathbf{R}) \equiv v(\mathbf{h}) - [\mathbf{h} \cdot \mathbf{R}^O + (\mathbf{1} - \mathbf{h}) \cdot \mathbf{R}]$$

subject to IC

$$\mathbf{R} \in \mathcal{I}(\mathbf{h})$$

and RP

$$J(\mathbf{h} + e_i|\mathbf{R}) \geq \delta J(\mathbf{h} + e_i|\tilde{\mathbf{R}}) \quad \forall \tilde{\mathbf{R}} \in \mathcal{C}(\mathbf{h} + e_i) \quad \text{for all } i \in \xi(\mathbf{h}) := \{i : h_i = 0\}$$

Difficult! A contract \mathbf{R} is a $(2^N + 1)$ dimensional object

Limited Commitment: Reformulation with Punishment

The problem can be reformulated as choosing $x \in \mathbb{R}$ (punishment) to maximize

$$J(\mathbf{h}|x) := v(\mathbf{h}) - \left[x + \mathbf{h} \cdot R^O(v(\mathbf{h}) - x, \mathbf{h}) \right] \quad (\text{obj. reformulated})$$

such that punishment x exceeds tendering agents' outside options

$$x \geq \underline{x}(\mathbf{h}) := \sum_{i \in \xi(\mathbf{h})} R_i^O(v(\mathbf{h} + e_i) - \bar{x}(\mathbf{h} + e_i), \mathbf{h} + e_i) \quad (\text{IC aggregated})$$

but not exceeds max punishment in *dual* problem at $\mathbf{h} - e_i$ for any $i \notin \xi(\mathbf{h})$

$$J(\mathbf{h}|x) \geq \delta J(\mathbf{h}) \stackrel{\text{A2}}{\iff} x \leq \bar{x}(\mathbf{h}) := \max \{x \in [0, v(\mathbf{h})] : J(\mathbf{h}|x) = \delta J(\mathbf{h})\}$$

Limited Commitment: Reformulation with Punishment

The problem can be reformulated as choosing $x \in \mathbb{R}$ (punishment) to maximize

$$J(\mathbf{h}|x) := v(\mathbf{h}) - \left[x + \mathbf{h} \cdot R^O(v(\mathbf{h}) - x, \mathbf{h}) \right] \quad (\text{obj. reformulated})$$

such that punishment x exceeds tendering agents' outside options

$$x \geq \underline{x}(\mathbf{h}) := \sum_{i \in \xi(\mathbf{h})} R_i^O(v(\mathbf{h} + e_i) - \bar{x}(\mathbf{h} + e_i), \mathbf{h} + e_i) \quad (\text{IC aggregated})$$

but not exceeds max punishment in *dual* problem at $\mathbf{h} - e_i$ for any $i \notin \xi(\mathbf{h})$

$$J(\mathbf{h}|x) \geq \delta J(\mathbf{h}) \stackrel{\text{A2}}{\iff} x \leq \bar{x}(\mathbf{h}) := \max \{x \in [0, v(\mathbf{h})] : J(\mathbf{h}|x) = \delta J(\mathbf{h})\}$$

Limited Commitment: Reformulation with Punishment

The problem can be reformulated as choosing $x \in \mathbb{R}$ (punishment) to maximize

$$J(\mathbf{h}|x) := v(\mathbf{h}) - \left[x + \mathbf{h} \cdot R^O(v(\mathbf{h}) - x, \mathbf{h}) \right] \quad (\text{obj. reformulated})$$

such that punishment x exceeds tendering agents' outside options

$$x \geq \underline{x}(\mathbf{h}) := \sum_{i \in \xi(\mathbf{h})} R_i^O(v(\mathbf{h} + e_i) - \bar{x}(\mathbf{h} + e_i), \mathbf{h} + e_i) \quad (\text{IC aggregated})$$

but not exceeds max punishment in *dual* problem at $\mathbf{h} - e_i$ for any $i \notin \xi(\mathbf{h})$

$$J(\mathbf{h}|x) \geq \delta J(\mathbf{h}) \stackrel{\text{A2}}{\iff} x \leq \bar{x}(\mathbf{h}) := \max \{x \in [0, v(\mathbf{h})] : J(\mathbf{h}|x) = \delta J(\mathbf{h})\}$$

Limited Commitment: Equity Example

With equity, $\bar{x}(\mathbf{h}) = \underline{x}(\mathbf{h})$ (Recall R1)

Max punishment \bar{x} satisfies recursion with initial condition $\bar{x}(\mathbf{1}) = 0$

$$\bar{x}(\mathbf{h}) = (1 - \delta)v(\mathbf{h}) + \delta \sum_{i \in \xi(\mathbf{h})} \alpha_i(v(\mathbf{h} + e_i) - \bar{x}(\mathbf{h} + e_i))$$

Punishment = Loss due to discounting + Discounted payoff to tendering shares

Note: \bar{x} has an oscillating structure

Limited Commitment: Equity Example

With equity, $\bar{x}(\mathbf{h}) = \underline{x}(\mathbf{h})$ (Recall R1)

Max punishment \bar{x} satisfies recursion with initial condition $\bar{x}(\mathbf{1}) = 0$

$$\bar{x}(\mathbf{h}) = (1 - \delta)v(\mathbf{h}) + \delta \sum_{i \in \xi(\mathbf{h})} \alpha_i(v(\mathbf{h} + e_i) - \bar{x}(\mathbf{h} + e_i))$$

Punishment = Loss due to discounting + Discounted payoff to tendering shares

Note: \bar{x} has an oscillating structure

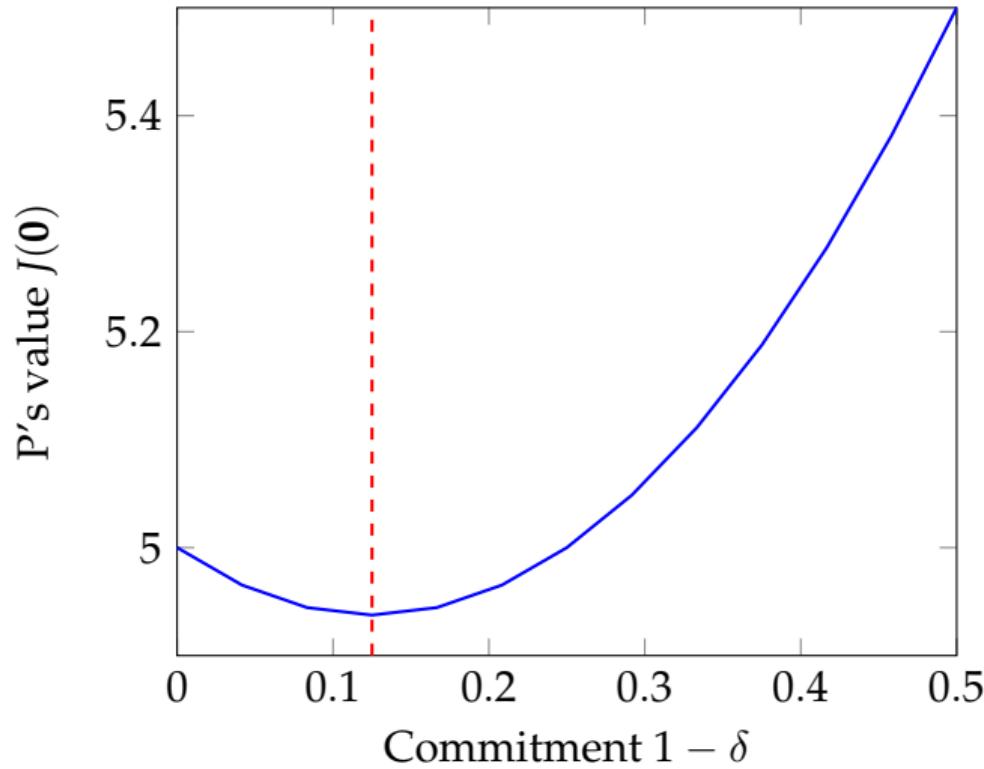
Dynamics of Punishment w. Equity: Intuition

Credible punishment has oscillating structure

At h if P can impose higher punishment upon deviation $h + e_i$

\implies P more willing to renegotiate at $h \implies$ Lower credible punishment at h

R2: Higher Commitment Might Backfire: 3-agent case



Intuition

Consider path A_i, A_j deviate sequentially

(+) Higher commitment makes punishment to A_i at e_i more credible

Lower on-path payment to $A_i \implies$ Higher value to P

(-) Higher commitment also makes punishment to A_j at $e_i + e_j$ more credible

Lower payment to A_j at $e_i \implies$ Less credible punishment to A_i

\implies Higher on path payment to $A_i \implies$ Lower value to P

Second (-) effect dominates when commitment low as renegotiation more likely

Closed-Form Solution and Shapley Value

Let $\Sigma(\xi(h))$ be the set of all permutations on tendering agents $\xi(h)$

$$\bar{x}(\mathbf{h}) = (1 - \delta)v(\mathbf{h}) + \sum_{k=1}^{|\xi(\mathbf{h})|} \frac{(-\delta)^{k+1}}{(|\xi(\mathbf{h})| - k)!} \sum_{\sigma \in \Sigma(\xi(\mathbf{h}))} \left(\prod_{s=1}^k \alpha_{\sigma(s)} \right) v \left(\mathbf{h} + \sum_{s=1}^k e_{\sigma(s)} \right)$$

Resembles Generalized Shapley Value (cf. Gul 89, Stole–Zwiebel 96, etc)

$$\psi_C(v) = \sum_{T \subset N \setminus C} \sum_{S \subset C} \frac{(N - |T| - |C|)! |T|!}{(N - |C| + 1)!} (-1)^{|C| - |S|} v(S \cup T)$$

NB: P's lack of full bargaining power stems from her lack of full commitment

Closed-Form Solution and Shapley Value

Let $\Sigma(\xi(h))$ be the set of all permutations on tendering agents $\xi(h)$

$$\bar{x}(\mathbf{h}) = \sum_{k=1}^{|\xi(\mathbf{h})|} \sum_{\sigma \in \Sigma(\xi(\mathbf{h}))} \frac{1}{(|\xi(\mathbf{h})| - k)!} (-1)^{k+1} \left(\prod_{s=1}^k \alpha_{\sigma(s)} \right) v \left(\mathbf{h} + \sum_{s=1}^k e_{\sigma(s)} \right)$$

Resembles Generalized Shapley Value (cf. Gul 89, Stole–Zwiebel 96, etc)

$$\psi_C(v) = \sum_{T \subset N \setminus C} \sum_{S \subset C} \frac{(N - |T| - |C|)! |T|!}{(N - |C| + 1)!} (-1)^{|C| - |S|} v(S \cup T)$$

NB: P's lack of full bargaining power stems from her lack of full commitment

Closed-Form Solution and Shapley Value

Let $\Sigma(\xi(h))$ be the set of all permutations on tendering agents $\xi(h)$

$$\bar{x}(h) = \sum_{k=1}^{|\xi(h)|} \sum_{\sigma \in \Sigma(\xi(h))} \frac{1}{(|\xi(h)| - k)!} (-1)^{k+1} \left(\prod_{s=1}^k \alpha_{\sigma(s)} \right) v \left(h + \sum_{s=1}^k e_{\sigma(s)} \right)$$

Resembles Generalized Shapley Value (cf. Gul 89, Stole–Zwiebel 96, etc)

$$\psi_C(v) = \sum_{T \subset N \setminus C} \sum_{S \subset C} \frac{(N - |T| - |C|)! |T|!}{(N - |C| + 1)!} (-1)^{|C| - |S|} v(S \cup T)$$

NB: P's lack of full bargaining power stems from her lack of full commitment

Closed-Form Solution and Shapley Value

Let $\Sigma(\xi(h))$ be the set of all permutations on tendering agents $\xi(h)$

$$\bar{x}(\mathbf{h}) = \sum_{k=1}^{|\xi(\mathbf{h})|} \sum_{\sigma \in \Sigma(\xi(\mathbf{h}))} \frac{1}{(|\xi(\mathbf{h})| - k)!} (-1)^{k+1} \left(\prod_{s=1}^k \alpha_{\sigma(s)} \right) v \left(\mathbf{h} + \sum_{s=1}^k e_{\sigma(s)} \right)$$

Resembles Generalized Shapley Value (cf. Gul 89, Stole–Zwiebel 96, etc)

$$\psi_C(v) = \sum_{T \subset N \setminus C} \sum_{S \subset C} \frac{(N - |T| - |C|)! |T|!}{(N - |C| + 1)!} (-1)^{|C| - |S|} v(S \cup T)$$

NB: P's lack of full bargaining power stems from her lack of full commitment

Takeaways

T0: Holdout problems appear to be coordination failures (Sturzenegger-Zettelmeyer 07)

... but are essentially commitment problems

T1: Securities with higher priority are attractive to dilute

... and thus more vulnerable to dilution

T2: Ability to punish holdouts tomorrow

... limits ability to punish holdouts today

T3: When picking a fight among agents

... one man's protection is another man's punishment

Extension: Property Rights Protection

Extension: Property Rights Protection

Baseline model assumes dilutability

Sometimes investors protected by property rights (e.g., houses, collateral)

Property rights undilutable by contracts (Ayotte–Bolton 11)

Serta Simmons created super-priority debt in uptier-transaction

Existing secured creditors got diluted

New York court confirmed legality in landmark ruling

Extension: Property Rights Protection

Baseline model assumes dilutability

Sometimes investors protected by property rights (e.g., houses, collateral)

Property rights undilutable by contracts (Ayotte–Bolton 11)

Serta Simmons created super-priority debt in uptier-transaction

Existing secured creditors got diluted

New York court confirmed legality in landmark ruling

Question

Q3: Does weaker investor protection help restructuring?

Results with Property Rights Protection

Full Commitment Benchmark:

BM3: Weaker investor protection always help restructuring

Limited Commitment Extension:

R3: It sometimes hurts restructuring, depending on holdout's payoff sensitivity

Debt holdout: Large decrease in protection might help (regime switch)

General contracts: Small decrease might also help when asymmetric

Property Rights Protection

A_i 's utility has an additional *constant* term π_i for property value

$$u_i = h_i (R_i^O + \pi_i) + (1 - h_i) R_i$$

E.g., liquidation value of collateral

NB: State-contingent protection (e.g., CDS) not included (cf. Bolton–Oehmke 11)

BM3: Weaker Protection Helps Restructuring

BM3: Weaker Protection Helps Restructuring

Lower π_i always leads to a higher value for P with full commitment

BM3: Higher Protection Hinders Restructuring: Proof

Only π_i needs to be compensated when dilution $\bar{x}(e_i)$ maxed out

$$R_i(v(\mathbf{0}), \mathbf{0}) \geq R^O(v(e_i) - \bar{x}(e_i), e_i) + \pi_i \quad (\text{IC for } A_i)$$

Restructuring is easier when investors are less protected

R3: Weaker Protection Could Hinder Restructuring

R3: Weaker Protection Could Hinder Restructuring

Lower π_i could lead to a lower value for P with limited commitment

R3: Weaker Protection Hinders Restructuring: Proof

Suppose 2 creditors with $D_i = 1$ and $\pi_i \in (1/2, 3/2)$;

Asset value = 4 (resp. 2, 0) when 0 (resp. 1, 2) creditors hold out

Off equilibrium path, P needs to pay tendering agent A_j at least π_j

Holdout A_i gets paid in full if $\pi_j < 1$; 0 otherwise $\implies R_i^O = \mathbb{1}_{\pi_j < 1}$

R3: Weaker Protection Hinders Restructuring: Proof Sketch

Suppose $\pi_j \in (1, 3/2)$ drops to $\pi_j - \Delta\pi_j \in (1/2, 1)$

Payment to A_j goes down by $\Delta\pi_j$ through IC as renegotiation unaffected

$$R_j \geq \mathbb{1}_{\pi_i < 1} + \pi_j$$

Payment to A_i goes up by 1 through IC as credible punishment higher

$$R_i \geq \mathbb{1}_{\pi_j < 1} + \pi_i$$

Overall, restructuring is $1 - \Delta\pi_j$ more expensive when A_j less protected

R3: Weaker Protection Hinders Restructuring: Intuition

- (+) Weaker protection decreases on-path compensation, facilitating restructuring
- (-) Weaker protection decreases off-path compensation, hindering restructuring

P can no longer credibly pay holdouts less because tendering agents demand less

Takeaways

T0: Holdout problems appear to be coordination failures (Sturzenegger-Zettelmeyer 07)

... but are essentially commitment problems

T1: Securities with higher priority are attractive to dilute

... and thus more vulnerable to dilution

T2: Ability to punish holdouts tomorrow

... limits ability to punish holdouts today

T3: When picking a fight among agents

... one man's protection is another man's punishment

Some Robustness Checks

Robustness: v also function of R

Baseline: when v is not a function of R

One dollar given to R holders

One dollar loss to R^O holders

When v is a function of R

One dollar given to R holders

More or less than one dollar loss to R^O holders

But relative distribution between P and A_i not affected by this modification

Robustness: Uncertainty and Risk-aversion

With risk-aversion

P can punish holdouts by giving them less

P can also punish holdouts by making their claims riskier

But P is also hurt if the change also makes her own claim riskier

assuming same risk-bearing capacity

Empirical Relevance

Cross-sectional Patterns in Private Policies (R1)

Heterogenous tools used to address holdouts in different settings

AMC restructured its \$2.6B debt by offering secured for unsecured debt

Elon Musk offered cash to buy Twitter for \$43B

Explained by R1: Credible punishment determined by holdout's payoff sensitivity

Equity has same priority with P and cannot be credibly punished

Evidence that Higher Commitment Can Help or Hurt (R2)

Conflicting evidence on effect of CACs (a device enhancing sovereign commitment)

Some papers find CACs increase borrowing costs (Almeida 20)

Others decrease (Chung-Papaioannou 21)

Reconciled by R2: Higher commitment can help or hurt

Higher commitment to punish makes sovereign more likely to renegotiate

Policy Implications

Policy proposal: Replace debt with equity-like securities

Idea: Equity less valuable in distress, so easier to restructure

My paper casts doubt: Might be harder as punishing holdouts hurts sovereign (R1)

Policy proposal: Limit holdout recovery in court

Idea: Punishing holdouts more credible, so easier to restructure

My paper casts doubt: Might be harder as sovereign more likely to renegotiate (R2)

Policy Implications

Policy proposal: Replace debt with equity-like securities

Idea: Equity less valuable in distress, so easier to restructure

My paper casts doubt: Might be harder as punishing holdouts hurts sovereign (R1)

Policy proposal: Limit holdout recovery in court

Idea: Punishing holdouts more credible, so easier to restructure

My paper casts doubt: Might be harder as sovereign more likely to renegotiate (R2)

Conclusion

Conclusion

Holdout problems are essentially commitment problems

Credible punishment depends on holdout's payoff sensitivity

Commitment to punishing holdouts could backfire via renegotiation

Protecting investors could benefit principal, hurting investors

Conclusion

Holdout problems are essentially commitment problems

Credible punishment depends on holdout's payoff sensitivity

Commitment to punishing holdouts could backfire via renegotiation

Protecting investors could benefit principal, hurting investors

Conclusion

Holdout problems are essentially commitment problems

Credible punishment depends on holdout's payoff sensitivity

Commitment to punishing holdouts could backfire via renegotiation

Protecting investors could benefit principal, hurting investors

Conclusion

Holdout problems are essentially commitment problems

Credible punishment depends on holdout's payoff sensitivity

Commitment to punishing holdouts could backfire via renegotiation

Protecting investors could benefit principal, hurting investors

New concern in sovereign debt market

Some lenders (e.g., China) might strike private deals with sovereign

How does lack of transparency affect restructuring and renegotiation?

Difficult *interim informed principal problem*

Appendix

Credibility: Formal Definition

Incentive for Principal (δ -dominance)

R δ -dominates \tilde{R} ($R \succeq_{\delta} \tilde{R}$) at $\hat{h} \Leftrightarrow J(\hat{h}|R) \geq \delta J(\hat{h}|\tilde{R})$, that is

$$\underbrace{v(\hat{h}) - \sum_{i=1}^N u_i(\hat{h}_i|\hat{h}_{-i}, R)}_{\text{P's payoff under } R \text{ at } \hat{h}} \geq \delta \underbrace{\left[v(\hat{h}) - \sum_{i=1}^N u_i(\hat{h}_i|\hat{h}_{-i}, \tilde{R}) \right]}_{\text{P's payoff under } \tilde{R} \text{ at } \hat{h}}$$

NB: High δ proxy for low commitment (discount factor, prob. of renegotiation)

Incentive for Principal (δ -dominance)

R δ -dominates \tilde{R} ($R \succeq_{\delta} \tilde{R}$) at $\hat{h} \Leftrightarrow J(\hat{h}|R) \geq \delta J(\hat{h}|\tilde{R})$, that is

$$\underbrace{v(\hat{h}) - \sum_{i=1}^N u_i(\hat{h}_i|\hat{h}_{-i}, R)}_{\text{P's payoff under } R \text{ at } \hat{h}} \geq \delta \underbrace{\left[v(\hat{h}) - \sum_{i=1}^N u_i(\hat{h}_i|\hat{h}_{-i}, \tilde{R}) \right]}_{\text{P's payoff under } \tilde{R} \text{ at } \hat{h}}$$

NB: High δ proxy for low commitment (discount factor, prob. of renegotiation)

Incentive for Principal (δ -dominance)

R δ -dominates \tilde{R} ($R \succeq_{\delta} \tilde{R}$) at $\hat{h} \Leftrightarrow J(\hat{h}|R) \geq \delta J(\hat{h}|\tilde{R})$, that is

$$\underbrace{v(\hat{h}) - \sum_{i=1}^N u_i(\hat{h}_i|\hat{h}_{-i}, R)}_{\text{P's payoff under } R \text{ at } \hat{h}} \geq \delta \underbrace{\left[v(\hat{h}) - \sum_{i=1}^N u_i(\hat{h}_i|\hat{h}_{-i}, \tilde{R}) \right]}_{\text{P's payoff under } \tilde{R} \text{ at } \hat{h}}$$

NB: High δ proxy for low commitment (discount factor, prob. of renegotiation)

Strong δ -Credibility

R is strongly δ -credible at h if

R is IC at h for agents

At deviation profile \hat{h} , R δ -dominates all IC contracts at \hat{h}

Strong δ -Credibility

R is strongly δ -credible at h if

R is IC at h for agents

At deviation profile \hat{h} , R δ -dominates all IC contracts at \hat{h}

Formally,

$$\mathcal{S}(h) = \left\{ R \in \mathcal{I}(h) : R \succeq_{\delta} \tilde{R} \quad \forall \tilde{R} \in \mathcal{I}(\hat{h}) \quad \forall \hat{h} : \|\hat{h} - h\| = 1 \right\}$$

δ -Credibility

R is δ -credible at h if

R is IC at h for agents

At deviation profile \hat{h} , R δ -dominates all δ -credible contracts

δ -Credibility

R is δ -credible at h if

R is IC at h for agents

At deviation profile \hat{h} , R δ -dominates all δ -credible contracts

Formally,

$$\mathcal{C}(h) = \left\{ R \in \mathcal{I}(h) : R \succeq_{\delta} \tilde{R} \quad \forall \tilde{R} \in \mathcal{C}(\hat{h}) \quad \forall \hat{h} : \|\hat{h} - h\| = 1 \right\}$$

Existence and Uniqueness

Thm 1: Set of δ -credible contracts exists and is unique

$\mathcal{C}(\cdot)$ exists and is unique for any $\delta \in [0, 1]$

Thm 1: $\mathcal{C}(\cdot)$ exists and is unique

At any $\mathbf{h} \neq \mathbf{0}, \mathbf{1}$

Persuading A_i to holdout is easy

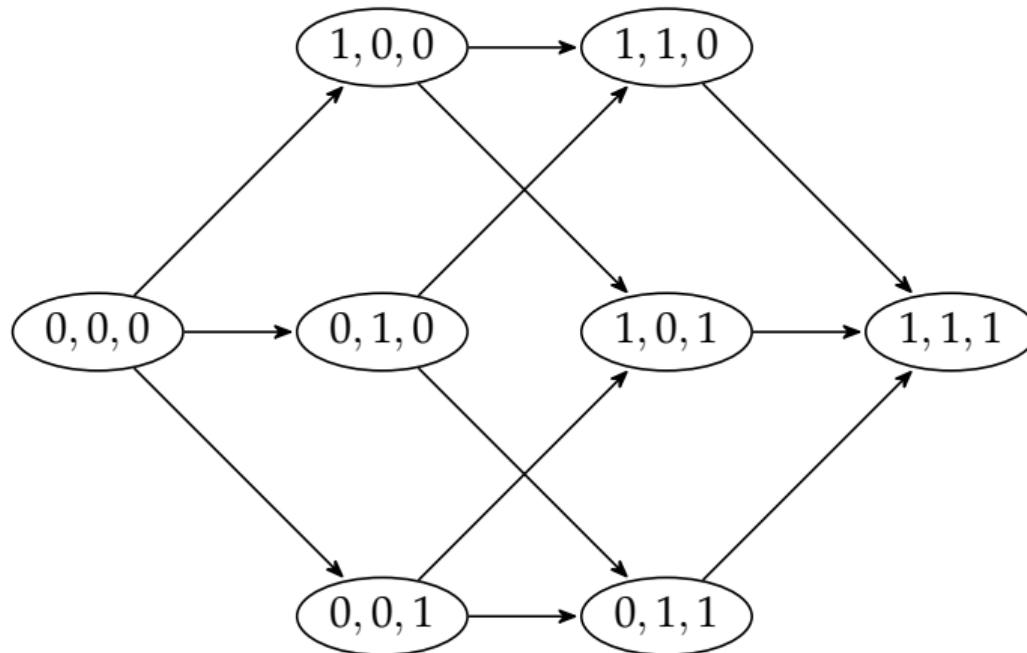
Just reduce tendering payoff to 0 \implies Credibility has no bite

Persuading A_i to tender is difficult

$J(\mathbf{h} + e_i)$ limits the maximum possible punishment

Only credibility constraint at $\mathbf{h} + e_i$ for $i \in \xi(\mathbf{h})$ matters \implies finite induction

Credibility dependence structure: 3-agent



Limited Commitment: Dual Problem

$$\max_x x$$

such that

$$x \geq \underline{x}(\mathbf{h})$$

and

$$J(\mathbf{h}|x) \geq \delta J(\mathbf{h})$$

Subproblem 1

For each h , fix a number $J(h)$, solve for

$$\mathcal{C}(h|J) = \left\{ R : \begin{array}{l} u_i(h_i|h_{-i}, R) \geq u_i(h'_i|h_{-i}, R) \quad \forall h'_i \in H_i \ \forall i \in \mathcal{N} \quad \& \\ v(\hat{h}) - \sum_{i=1}^N u_i(\hat{h}_i|\hat{h}_{-i}, R) \geq \delta J(\hat{h}) \quad \forall \hat{h} \in \mathcal{B}(h) \end{array} \right\}$$

$\mathcal{C}(\cdot|J)$ well-defined given $J(\cdot)$

Subproblem 2

Given feasible contracts $\mathcal{C}(\mathbf{h})$, solve for

$$J(\mathbf{h}|\mathcal{C}) = \sup_{\mathbf{R} \in \mathcal{C}(\mathbf{h})} v(\mathbf{h}) - \sum_{i=1}^N u_i(h_i|h_{-i}, \mathbf{R})$$

$J(\mathbf{h}|\mathcal{C})$ attainable as $\mathcal{C}(\mathbf{h})$ closed for each \mathbf{h}

\implies Solve for fixed point of $\mathbf{J}(\mathbf{h}) = J(\mathbf{h}|\mathcal{C}(\mathbf{h}|\mathbf{J}))$

Solve for $J(\mathbf{h}|\mathcal{C}(\mathbf{h}|\mathbf{J}))$

Optimal contracts on

$$\mathcal{C}(\mathbf{h}|\mathbf{J}) = \left\{ R : \begin{array}{l} u_i(h_i|h_{-i}, R) \geq u_i(h'_i|h_{-i}, R) \quad \forall h'_i \in H_i \ \forall i \in \mathcal{N} \quad \& \\ v(\hat{\mathbf{h}}) - \sum_{i=1}^N u_i(\hat{h}_i|\hat{\mathbf{h}}_{-i}, R) \geq \delta \mathbf{J}(\hat{\mathbf{h}}) \quad \forall \hat{\mathbf{h}} \in \mathcal{B}(\mathbf{h}) \end{array} \right\}$$

binds IC to minimize payment on path

minimizes RHS of IC subject to credibility constraints

Asymmetry in IC

To solve for $J(\mathbf{h}|\mathcal{C}(\mathbf{h}|J))$

IC for holdout is easy: Simply set term in x to zero

$$x + \mathbf{h} \cdot \mathbf{R}^O(v - x, \mathbf{h})$$

IC for tendering is difficult: Setting one of \mathbf{R}^O to zero might be costly

Require excessively large x and could hurt P

Argentina Sovereign Debt Crisis

Argentina struggled with holdouts due to low commitment

In 2005, Argentina in debt distress: exchange offer to deleverage

Offers creditors 70% haircut

Argentina paid majority that accepted, defaulted on hold-out creditors

Holdouts sued in NY court saying selective default violated pari passu clause

Decade-long legal battle led to ruling in favor of holdouts

Court froze Argentina's US assets leading to renewed distress

Capital market access blocked for 15 yrs & loss amounts to \$11.3B (Hébert–Schreger)

Market responded making CACs standard (or mandatory) in sovereign bonds

Argentina struggled with holdouts due to low commitment

In 2005, Argentina in debt distress: exchange offer to deleverage

Offers creditors 70% haircut

Argentina paid majority that accepted, defaulted on hold-out creditors

Holdouts sued in NY court saying selective default violated pari passu clause

Decade-long legal battle led to ruling in favor of holdouts

Court froze Argentina's US assets leading to renewed distress

Capital market access blocked for 15 yrs & loss amounts to \$11.3B (Hébert–Schreger)

Market responded making CACs standard (or mandatory) in sovereign bonds

Argentina struggled with holdouts due to low commitment

In 2005, Argentina in debt distress: exchange offer to deleverage

Offers creditors 70% haircut

Argentina paid majority that accepted, defaulted on hold-out creditors

Holdouts sued in NY court saying selective default violated pari passu clause

Decade-long legal battle led to ruling in favor of holdouts

Court froze Argentina's US assets leading to renewed distress

Capital market access blocked for 15 yrs & loss amounts to \$11.3B (Hébert–Schreger)

Market responded making CACs standard (or mandatory) in sovereign bonds

Argentina struggled with holdouts due to low commitment

In 2005, Argentina in debt distress: exchange offer to deleverage

Offers creditors 70% haircut

Argentina paid majority that accepted, defaulted on hold-out creditors

Holdouts sued in NY court saying selective default violated pari passu clause

Decade-long legal battle led to ruling in favor of holdouts

Court froze Argentina's US assets leading to renewed distress

Capital market access blocked for 15 yrs & loss amounts to \$11.3B (Hébert–Schreger)

Market responded making CACs standard (or mandatory) in sovereign bonds

Weak Consistency

Axiom: Weak Consistency

WC (Adapted from Moulin 2000): R doesn't alter *allocation* of R^O

Let $x = \sum_{i=1}^N (1 - h_i) \cdot R_i(v, \mathbf{h})$ be payoff to tendering shares, "dilution" of R^O

WC requires

$$\tilde{R}^O(v, \mathbf{h}) = R^O(v - x, h)$$

Implication: P cannot selectively dilute certain contracts Back

Problem Reduction

New contracts determine x allocated to R holders

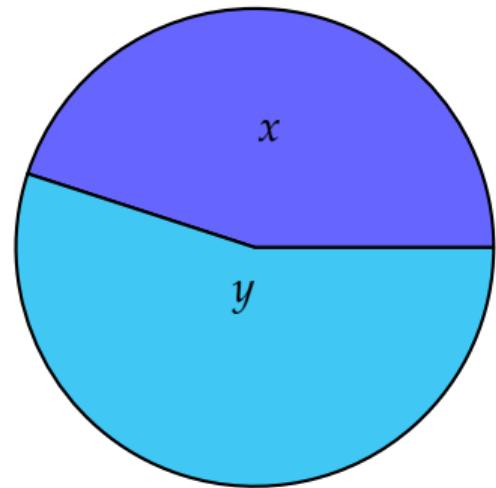
$$\tilde{R}(x, h) = R(v, h)$$

Old contracts share the remaining $y = v - x$

$$R^O(y, h) = \tilde{R}^O(v, h)$$

WC reduces problem to design of R . \tilde{R}^O unnecessary

[Back](#)



Classic Papers

Example 1: Takeover (Grossman–Hart 80)

Call $\xi(h) = \{i \in \mathcal{N} : h_i = 0\}$ the set of tendering agents

Value enhanced if majority tenders

$$v(h) = \mathbb{1}_{|\xi(h)| \geq 50\%}$$

Shareholder gets a share of asset value given dilution factor d

$$R_i^O(v, h) = \frac{v - d}{N}$$

Gets R_i if tendering

Example 2: Bond Buyback Boondoggle (Bulow–Rogoff 88)

Asset value consists of random payoff and internal cash: $v(h)(\omega) = X(\omega) + W(h)$

Holdouts get paid in full or pledgeable value pro rata: $R_i^O(v, h) = \min \left\{ \frac{\theta v}{N - |\xi(h)|}, \frac{D}{N} \right\}$

Tendering creditor gets R_i

Holding out increases marginal value threshold

Back

Example 3: Debt Restructuring (Gertner–Scharfstein 91)

No-cash-shortage case: Asset value =random interim payoff+ project return

$$v(h)(\omega) = X(\omega) + Y - I$$

$$R_i^O(v, h) = \min \left\{ \frac{\theta v}{N - |\xi(h)|}, \frac{D}{N} \right\}$$

Senior Debt

$$R_i(v, h) = \min \left\{ \frac{1}{|\xi(h)|} \left(v - \frac{N - |\xi(h)|}{N} qD \right), \frac{pD}{N} \right\}$$

Back

Existing Contracts

A_i 's payoff is $h_i R_i^O(v, \mathbf{h}, R) + (1 - h_i) R_i(v, \mathbf{h})$ where

v is value of asset

P 's payoff is $v - \langle h, R^O(v, \mathbf{h}, R) \rangle - \langle 1 - h, R(v, \mathbf{h}) \rangle$

Assumption: $\langle h, R^O(\cdot, h, R) \rangle$ is 1-Lipschitz $\forall h, R$

Existing Contracts (Obsolete)

Existing contracts are potentially *inconsistent* \implies Model payoff instead of contracts

Let R^O be system (E.g. bankruptcy) specifying payoff given holding structure
 $h = \{h_i\}_i$

A_i 's contract receives $R_i^O(v, h)$ when

Asset value is v

A_i has h_i shares of his contract outstanding (initially $h_i = 1$)

P receives $v - \langle h, R^O(v, h) \rangle$

Assumption: $\langle h, R^O(\cdot, h) \rangle$ is 1-Lipschitz $\forall h$

Existing Contracts (Obsolete)

Existing contracts are potentially *inconsistent* \implies Model payoff instead of contracts

Let R^O be system (E.g. bankruptcy) specifying payoff given holding structure
 $h = \{h_i\}_i$

A_i 's contract receives $R_i^O(v, h)$ when

Asset value is v

A_i has h_i shares of his contract outstanding (initially $h_i = 1$)

P receives $v - \langle h, R^O(v, h) \rangle$

Assumption: $\langle h, R^O(\cdot, h) \rangle$ is 1-Lipschitz $\forall h$

Existing Contracts (Obsolete)

Existing contracts are potentially *inconsistent* \implies Model payoff instead of contracts

Let R^O be system (E.g. bankruptcy) specifying payoff given holding structure
 $h = \{h_i\}_i$

A_i 's contract receives $R_i^O(v, h)$ when

Asset value is v

A_i has h_i shares of his contract outstanding (initially $h_i = 1$)

P receives $v - \langle h, R^O(v, h) \rangle$

Assumption: $\langle h, R^O(\cdot, h) \rangle$ is 1-Lipschitz $\forall h$

Exchange Offer

P offers new contracts R in exchange for old

A_i receives $(1 - h_i) R_i(v, \mathbf{h})$ from tendering $1 - h_i$

A_i receives $h_i \tilde{R}_i^O(v, \mathbf{h})$ from non-tendering shares

NB: \tilde{R}^O differs from R^O due to contractual externality

NB: P cannot issue contracts to herself/outsider (cf. Mueller-Panunzi 04)

Simplifying notations

We write

$$R_i(h_i|h_{-i}) := R_i(v(h), h) \text{ for } h = (h_{-i}, h_i)$$

$$R_i^O(h_i|h_{-i}, R) := R_i^O \left(v(h) - \sum_{i=1}^N (1 - h_i) R_i(v(h), h), h \right) \text{ for } h = (h_{-i}, h_i)$$

$$u_i(h_i|h_{-i}, R) := (1 - h_i) \cdot R_i(h_i|h_{-i}) + h_i \cdot R_i^O \cdot (h_i|h_{-i}, R)$$

Maximum Possible Punishment

Total payment to all agents off path at \hat{h} without renegotiation

$$x(\hat{h}, R) + \hat{h} \cdot R^O(v - x(\hat{h}, R), \hat{h})$$

Credible only if total payment at \hat{h} w/o reneg. \leq payment at \hat{h} w/ reneg.

$$x(\hat{h}, R) + \hat{h} \cdot R^O(v - x(\hat{h}, R), \hat{h}) \leq \min_x \{x + \hat{h} \cdot R^O(v - x, \hat{h})\}$$

One minimizer $x = 0$. Other minimizers might exist depending on shape of $R_i^O(\cdot, \hat{h})$

Derivation of 3-agent example

Higher Commitment Hinders Restructuring: 3-agent

Assume asset value v_k when k agents hold out and $\alpha_i = 1/3$

No credible punishment when all hold out: $\bar{x}(\mathbf{1}) = 0$

Punishment only via discounting when 2 agents hold out: $\bar{x}(e_i + e_j) = (1 - \delta)v_2$

... also via off-path reneg. when 1 agent holds out: $\bar{x}(e_i) = (1 - \delta)v_1 + \frac{2}{3}\delta^2v_2$

P's value quadratic in δ

$$J(\mathbf{0}) = v_0 - \delta v_1 + \frac{2}{3}\delta^2 v_2$$

Higher Commitment Hinders Restructuring: 3-agent

Assume asset value v_k when k agents hold out and $\alpha_i = 1/3$

No credible punishment when all hold out: $\bar{x}(\mathbf{1}) = 0$

Punishment only via discounting when 2 agents hold out: $\bar{x}(e_i + e_j) = (1 - \delta)v_2$

... also via off-path reneg. when 1 agent holds out: $\bar{x}(e_i) = (1 - \delta)v_1 + \frac{2}{3}\delta^2v_2$

P's value quadratic in δ

$$J(\mathbf{0}) = v_0 - \delta v_1 + \frac{2}{3}\delta^2 v_2$$

Higher Commitment Hinders Restructuring: 3-agent

Assume asset value v_k when k agents hold out and $\alpha_i = 1/3$

No credible punishment when all hold out: $\bar{x}(\mathbf{1}) = 0$

Punishment only via discounting when 2 agents hold out: $\bar{x}(e_i + e_j) = (1 - \delta)v_2$

... also via off-path reneg. when 1 agent holds out: $\bar{x}(e_i) = (1 - \delta)v_1 + \frac{2}{3}\delta^2v_2$

P's value quadratic in δ

$$J(\mathbf{0}) = v_0 - \delta v_1 + \frac{2}{3}\delta^2 v_2$$

Higher Commitment Hinders Restructuring: 3-agent

Assume asset value v_k when k agents hold out and $\alpha_i = 1/3$

No credible punishment when all hold out: $\bar{x}(\mathbf{1}) = 0$

Punishment only via discounting when 2 agents hold out: $\bar{x}(e_i + e_j) = (1 - \delta)v_2$

... also via off-path reneg. when 1 agent holds out: $\bar{x}(e_i) = (1 - \delta)v_1 + \frac{2}{3}\delta^2v_2$

P's value quadratic in δ

$$J(\mathbf{0}) = v_0 - \delta v_1 + \frac{2}{3}\delta^2 v_2$$

Higher Commitment Hinders Restructuring: 3-agent

Assume asset value v_k when k agents hold out and $\alpha_i = 1/3$

No credible punishment when all hold out: $\bar{x}(\mathbf{1}) = 0$

Punishment only via discounting when 2 agents hold out: $\bar{x}(e_i + e_j) = (1 - \delta)v_2$

... also via off-path reneg. when 1 agent holds out: $\bar{x}(e_i) = (1 - \delta)v_1 + \frac{2}{3}\delta^2v_2$

P's value quadratic in δ

$$J(\mathbf{0}) = v_0 - \delta v_1 + \frac{2}{3}\delta^2 v_2$$

Intermediate Credibility

k -step δ -credible contracts

R is k -step δ -credible at h if

R is IC at h for agents

At deviation profile \hat{h} , R δ -dominates all $(k-1)$ -step δ -credible contracts

$\mathcal{C}_k(h) =$

$$\left\{ R : \begin{array}{l} u_i(h_i|h_{-i}, R) \geq u_i(h'_i|h_{-i}, R) \quad \forall h'_i \in H_i \quad \forall i \in \mathcal{N} \quad \& \\ v(\hat{h}) - \sum_{i=1}^N u_i(\hat{h}_i|\hat{h}_{-i}, R) \geq \delta \left[\textcolor{brown}{v(\hat{h})} - \sum_{i=1}^N \textcolor{brown}{u_i(\hat{h}_i|\hat{h}_{-i}, \tilde{R})} \right] \quad \forall \tilde{R} \in \mathcal{C}_{k-1}(\hat{h}) \quad \forall \hat{h} \in \mathcal{B}(h) \end{array} \right.$$

k -step δ -credible contracts

R is k -step δ -credible at h if

R is IC at h for agents

At deviation profile \hat{h} , R δ -dominates all $(k - 1)$ -step δ -credible contracts

$$\mathcal{C}_k(h) =$$

$$\left\{ R : \begin{array}{l} u_i(h_i|h_{-i}, R) \geq u_i(h'_i|h_{-i}, R) \quad \forall h'_i \in H_i \quad \forall i \in \mathcal{N} \quad \& \\ v(\hat{h}) - \sum_{i=1}^N u_i(\hat{h}_i|\hat{h}_{-i}, R) \geq \delta \left[v(\hat{h}) - \sum_{i=1}^N u_i(\hat{h}_i|\hat{h}_{-i}, \tilde{R}) \right] \quad \forall \tilde{R} \in \mathcal{C}_{k-1}(\hat{h}) \quad \forall \hat{h} \in \mathcal{B}(h) \end{array} \right.$$

Lemmata on k -step δ -credible contracts

Even (resp. odd) subsequences are decreasing (resp. increasing)

$$\mathcal{C}_{2k+2}(\mathbf{h}) \subset \mathcal{C}_{2k}(\mathbf{h}); \quad \mathcal{C}_{2k-1}(\mathbf{h}) \subset \mathcal{C}_{2k+1}(\mathbf{h})$$

δ -credible contracts are limiting case

$$\liminf_{k \rightarrow \infty} \mathcal{C}_k(\mathbf{h}) \subset \mathcal{C}(\mathbf{h}) \subset \limsup_{k \rightarrow \infty} \mathcal{C}_k(\mathbf{h})$$

Unanimity

How to incorporate unanimity?

Let A_1 be “Dead Weight Loss” who always tenders by setting

$$R_1^O(v, \mathbf{h}) = 0$$

Deal off \iff Entire asset goes to A_1

$$R_1(v, \mathbf{h}) = v(\mathbf{h}) \quad \forall \mathbf{h} \neq \mathbf{0}$$

Example: Unanimity

Asset value 100 if anyone holds out, 200 if both tenders. Each has 50% equity.

P offers 51 if both tender; cancels deal otherwise.

		A ₂	
		Tender	Hold out
A ₁	Tender	51, 51	50, 50
	Hold out	50, 50	50, 50

Example

Example: Takeover with Cash

Firm Value $v = \$50 \times (2 + \# \text{tendering agents})$; A₁ and A₂ each 50% equity

P offers \$51 to acquire shares and costs \$1 to implement deal

$$v = 100$$

$$v = 150$$

$$v = 200$$

$$A_2: 51$$

$$A_1: 51$$

$$A_2: 51$$

$$A_1: 50$$

$$A_2: 50$$

$$A_1: 75$$

$$P: 0$$

$$P: 24 - 1 = 23$$

$$P: 98 - 1 = 97$$

Example: Takeover with Cash

Firm Value $v = \$50 \times (2 + \# \text{tendering agents})$; A₁ and A₂ each 50% equity

P offers \$51 to acquire shares and costs \$1 to implement deal

$$v = 100$$

$$v = 150$$

$$v = 200$$

$$A_2: 51$$

$$A_1: 51$$

$$A_2: 51$$

$$A_1: 50$$

$$A_2: 50$$

$$A_1: 75$$

$$P: 0$$

$$P: 24 - 1 = 23$$

$$P: 98 - 1 = 97$$

Example: Takeover with Cash

Firm Value $v = \$50 \times (2 + \# \text{tendering agents})$; A₁ and A₂ each 50% equity

P offers \$51 to acquire shares and costs \$1 to implement deal

$$v = 100$$

$$v = 150$$

$$v = 200$$

$$\text{A}_2: 51$$

$$\text{A}_1: 51$$

$$\text{A}_2: 51$$

$$\text{A}_1: 50$$

$$\text{A}_2: 50$$

$$\text{A}_1: 75$$

$$\text{P: 0}$$

$$\text{P: } 24 - 1 = 23$$

$$\text{P: } 98 - 1 = 97$$

Example: Takeover with More Cash

Firm Value $v = \$50 \times (2 + \# \text{tendering agents})$; A₁ and A₂ each 50% equity

P offers \$100 to acquire shares and costs \$1 to implement deal

$$v = 100$$

$$v = 200$$

$$\begin{array}{cc} A_1: 100 & A_2: 100 \end{array}$$

$$\begin{array}{cc} A_1: 100 & A_2: 100 \end{array}$$

$$P: 0$$

$$P: 0 - 1 = -1$$

Example: Takeover with Moderate Cash

Firm Value $v = \$50 \times (2 + \# \text{tendering agents})$; A₁ and A₂ each 50% equity

P offers \$76 to acquire shares and costs \$1 to implement deal

$v = 100$

$v = 150$

$v = 200$

A₂: 76

A₁: 76

A₂: 76

A₁: 50

A₂: 50

A₁: 75

P: 0

P: $-1 - 1 = -2$

P: $48 - 1 = 47$

Example: Takeover with Moderate Cash

Firm Value $v = \$50 \times (2 + \# \text{tendering agents})$; A₁ and A₂ each 50% equity

P offers \$76 to acquire shares and costs \$1 to implement deal

$$v = 100$$

$$v = 150$$

$$v = 200$$

$$A_2: 76$$

$$A_1: 76$$

$$A_2: 76$$

$$A_1: 50$$

$$A_2: 50$$

$$A_1: 75$$

$$P: 0$$

$$P: -1 - 1 = -2$$

$$P: 48 - 1 = 47$$

Example: Takeover with Moderate Cash

Firm Value $v = \$50 \times (2 + \# \text{tendering agents})$; A₁ and A₂ each 50% equity

P offers \$76 to acquire shares and costs \$1 to implement deal

$$v = 100$$

$$v = 150$$

$$v = 200$$

$$A_2: 76$$

$$A_1: 76 \quad A_2: 76$$

$$A_1: 50$$

$$A_2: 50$$

$$A_1: 75$$

$$P: 0$$

$$P: -1 - 1 = -2$$

$$P: 48 - 1 = 47$$

Example: Takeover with Debt

Firm Value $v = \$50 \times (2 + \# \text{tendering agents})$; A₁ and A₂ each 50% equity

P offers debt $D = \$51$ to acquire shares and costs \$1 to implement deal

$$v = 100$$

$$v = 150$$

$$v = 200$$

$$A_2: 51$$

$$A_1: 51$$

$$A_2: 51$$

$$A_1: 100$$

$$A_2: 100$$

$$A_1: 49.5$$

$$P: 0$$

$$P: 49.5 - 1 = 48.5$$

$$P: 98 - 1 = 97$$

Example: Takeover with Debt

P offers debt $D = \$67$ to acquire shares and costs $\$1$ to implement deal

$$v = 100$$

$$A_1: 50$$

$$P: 0$$

$$v = 300$$

$$A_1: 66$$

$$P: 66 - 1 = 65$$

$$v = 400$$

$$A_2: 67$$

$$A_1: 102$$

$$A_2: 102$$

$$P: 196 - 1 = 195$$

Discarded Slides

Holdout Problems Are Pervasive

Land assembly, corporate takeovers, debt restructuring, ...

Problem is same in many settings but mechanisms addressing it different

E.g., senior debt in corporate restructuring, cash bids in takeovers

Mechanism punishing holdouts solves problem but can't commit to punishment

See Argentine restructuring: holdouts sued and got paid in full

Policies address holdout problem by targeting commitment to punish holdouts

Some increase commitment, e.g. CACs, some decrease it, e.g. pari passu clauses

Holdout Problems Are Pervasive

Land assembly, corporate takeovers, debt restructuring, ...

Problem is same in many settings but mechanisms addressing it different

E.g., senior debt in corporate restructuring, cash bids in takeovers

Mechanism punishing holdouts solves problem but can't commit to punishment

See Argentine restructuring: holdouts sued and got paid in full

Policies address holdout problem by targeting commitment to punish holdouts

Some increase commitment, e.g. CACs, some decrease it, e.g. pari passu clauses

Holdout Problems Are Pervasive

Land assembly, corporate takeovers, debt restructuring, ...

Problem is same in many settings but mechanisms addressing it different

E.g., senior debt in corporate restructuring, cash bids in takeovers

Mechanism punishing holdouts solves problem but can't commit to punishment

See Argentine restructuring: holdouts sued and got paid in full

Policies address holdout problem by targeting commitment to punish holdouts

Some increase commitment, e.g. CACs, some decrease it, e.g. pari passu clauses

Holdout Problems Are Pervasive

Land assembly, corporate takeovers, debt restructuring, ...

Problem is same in many settings but mechanisms addressing it different

E.g., senior debt in corporate restructuring, cash bids in takeovers

Mechanism punishing holdouts solves problem but can't commit to punishment

See Argentine restructuring: holdouts sued and got paid in full

Policies address holdout problem by targeting commitment to punish holdouts

Some increase commitment, e.g. CACs, some decrease it, e.g. pari passu clauses

General characterization with l.c.

Define

$$\text{Delta} = \frac{\Delta \text{ Contract Payoff}}{\Delta \text{ Asset Value}}$$

If $\text{Delta} < 1$, contingent contracts cannot do better than non-contingent

General Contingent Contracts

Full value extraction achieved by diluting holdout off-path

NB: Implementation resembles consent payment, ruled legal by English high court

General Contingent Contracts: Proof

Pay every agent $R_i = \varepsilon \geq 0$ if all tenders and 0 if no one tenders

With partial tendering, divide the asset among tendering agents

$$R_i(v(\mathbf{h}), \mathbf{h}) = \begin{cases} 0 & \text{if } i \notin \xi(\mathbf{h}) \\ \frac{v(\mathbf{h})}{|\xi(\mathbf{h})|} & \text{if } i \in \xi(\mathbf{h}) \end{cases}$$

NB: Eqm unique when $\varepsilon > 0$

Example

Asset value 100 if anyone holds out, 200 if both tenders. Each has 50% equity.

P offers 1 if both tender; Senior debt of 100 if one tenders.

		A ₂	
		Tender	Hold out
A ₁	Tender	1, 1	100, 0
	Hold out	0, 100	50, 50

Intuition

A_i holds out only if outside option valuable

Outside option not valuable when others granted “priority”

P can pick a fight among agents by prioritizing tendering agents

Holdouts’ outside option diluted via contractual externality

Problem: Punishment credible only if P can commit

Intuition

A_i holds out only if outside option valuable

Outside option not valuable when others granted “priority”

P can pick a fight among agents by prioritizing tendering agents

Holdouts’ outside option diluted via contractual externality

Problem: Punishment credible only if P can commit

Intuition

When $\Delta < 1$, reallocating value to tendering agents hurts P

Threat never credible

When $\Delta = 1$, dilution cost entirely borne by holdouts, P indifferent

Threat credible